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Abstract

The distribution iteration (DI) algorithm, developed by Wager [32] and Prins

[28], for solving the Boltzmann Transport Equation (BTE) has proven, with further

development, to be a robust alternative to von Neumann iteration on the scattering

source, aka source iteration (SI). Previous work with DI was based on the time-

independent form of the transport equation. In this research, the DI algorithm was

1. Improved to provide faster, more efficient, robust convergence

2. Extended to XYZ geometry

3. Extended to Multigroup Energy treatment

4. Extended to solve the time-dependent form of the Boltzmann Transport Equa-

tion.

The discrete ordinates equations for approximating the BTE have been solved

using SI since the discrete ordinates method was developed at Los Alamos Scientific

Laboratory by 1953. However, SI is often inefficient by itself and requires an accelera-

tor in order to produce results efficiently and reliably. The acceleration schemes that

are in use in production codes are Diffusion Synthetic Acceleration (DSA) and Trans-

port Synthetic Acceleration (TSA). DSA is ineffective for some problems, and cannot

be extended to high-performance spatial quadratures. TSA is less effective than DSA

and fails for some problems. Krylov acceleration has been explored in recent years,

but has many parameters that require problem-dependent tuning for efficiency and

effectiveness.

The DI algorithm is an alternative to source iteration that, in our testing, does

not require an accelerator. I developed a formal verification plan and executed it to

verify the results produced by my code that implemented DI with the above features.

A new, matrix albedo, boundary condition treatment was developed and implemented

iv



so that infinite-medium benchmarks could be included in the verification test suite.

The DI algorithm was modified for parallel efficiency and the prior instability of the

refinement sweep was corrected. The testing revealed that DI performed as well or

faster than source iteration with DSA and that DI continued to work where DSA

failed. Performance did degrade when the diamond-difference (without fixup) spatial

quadrature was used. Because diamond-difference is a non-positive spatial quadra-

ture, it can produce nonphysical negative fluxes, particularly in higher dimensions.

I developed a new fixup scheme to accommodate the negative fluxes, but it did not

improve performance in XYZ geometry when the scattering ratio was near unity.

My DI algorithm successfully solves the time-dependent form of the BTE using

the semi-implicit method implemented by PARTISN. The agreement between DI and

PARTISN was excellent.

With these improvements and tests, DI is ready for use as a general replacement

for von Neumann iteration on the scattering source.
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Time Dependent Discrete Ordinates Neutron Transport

Using Distribution Iteration

in XYZ Geometry

I. Introduction

The linearized form of the Boltzmann Transport Equation (BTE), aka the neu-

tron transport equation, can be expressed as

[
1

v

∂

∂t
+ Ω̂ · ~∇+ σ(~r, E, t)

]
ψ(~r, Ω̂, E, t) = q(~r, Ω̂, E, t), (1.1)

where ~r is the position; Ω̂ is the direction of travel; E is the energy of the neutron;

t is time; v is the neutron velocity; σ is the total cross section and ψ is the angular

flux. The rate density, q, can be represented as

q(~r, Ω̂, E, t) =

∫ ∞

0

dE ′
∫

dΩ′ σs(~r, E
′ → E, Ω̂′ · Ω̂, t)ψ(~r, Ω̂′, E ′, t)

+ χ(E)

∫
dE ′ νσf (~r, E

′, t)

∫
dΩ′ ψ(~r, Ω̂′, E ′, t) + qe(~r, Ω̂, E, t), (1.2)

where σs is the differential scattering cross section; χ is the fission spectrum; ν is the

mean number of neutrons produced per fission; σf is the fission cross section (Lewis

& Miller [22]) and qe is the fixed (embedded) emission rate density. The rate density

can be further categorized as

qs(~r, Ω̂, E, t) =

∫ ∞

0

dE ′
∫

dΩ′ σs(~r, E
′ → E, Ω̂′ · Ω̂, t)ψ(~r, Ω̂′, E ′, t) (1.3)

qf (~r, Ω̂, E, t) = χ(E)

∫
dE ′ νσf (~r, E

′, t)

∫
dΩ′ ψ(~r, Ω̂′, E ′, t) (1.4)

where qs is the scattering source and qf is the fission source.

The vast majority of all research in neutron transport is focused either on the

time-independent BTE or on Monte Carlo methods. The time-independent BTE
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simplifies the transport equation by solving for the steady-state solution, which forces

the time derivative to zero. A common approach for solving the time-dependent BTE

utilizes a method based on solving the time-independent BTE (Dupree [11], Reed [30]

and Hill [16]). Monte Carlo methods are also used to solve time-dependent problems;

however, they can require a large number of particle histories in order to reduce

uncertainty.

The focus of this research was to incorporate the distribution iteration method

into a multigroup, time-dependent BTE solver. The distribution iteration algorithm

has substantial advantages over the more common source iteration algorithm, the

most notable ones being its rapid convergence in highly-scattering regions and the

ability to easily implement distribution iteration in parallel.

1.1 Background

The integro-differential form of the BTE makes it particularly difficult to solve

and analytic solutions are only possible for the simplest of problems. Numerical

solutions to the BTE are obtained by applying a variety of approximations in order

to simplify the BTE (Carlson [7]):

• Assume a stationary (time-independent) solution

• Discretize in energy (multigroup approximation)

• Discretize in angle (discrete ordinates)

• Spherical harmonics expansion of the scattering source

The direct application of difference methods directly to the BTE is usually avoided

because neutrons are not strictly conserved (Carlson [9]). In order to ensure neu-

tron conservation, cell averages of the distribution function are used and cell balance

equations are coupled to the system of equations.

The spherical harmonics expansion of the scattering source is the result of using

a Legendre expansion of the differential cross section σs in the scattering source qs
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making the expansion

σs(~r, E
′ → E, Ω̂′ · Ω̂, t) =

∞∑
l=0

(2l + 1)σsl(~r, E
′ → E, t)Pl(Ω̂

′ · Ω̂), (1.5)

where Pl is the Legendre polynomial of order l and σsl are the Legendre scattering

moments. Substituting this approximation into the scattering source yields,

qs(~r, Ω̂, E, t) =
L∑
l=0

(2l + 1)

∫
dE ′ σsl(~r, E

′ → E, t)∫
dΩ′ Pl(Ω̂ · Ω̂′)ψ(~r,Ω′, E ′, t). (1.6)

where the Legendre expansion has been truncated to L terms. Using the Legendre

addition theorem,

Pl(Ω̂ · Ω̂′) =
1

2l + 1

l∑
m=−l

Y ∗
lm(Ω̂)Ylm(Ω̂′), (1.7)

where Ylm is the spherical harmonics function and Y ∗
lm is its complex conjugate, per-

mits the removal of the inconvenient scattering angle expression, Ω̂′ · Ω̂, and replaces

it with the more convenient directions of travel Ω̂′ and Ω̂. With the above derivations,

the scattering term can be expressed as

qs(~r, Ω̂, E, t) =
L∑
l=0

l∑
m=−l

Y ∗
lm(Ω̂)

∫
dE ′ σsl(~r, E

′ → E, t)∫
dΩ′ Ylm(Ω̂′)ψ(~r, Ω̂′, E ′, t). (1.8)

The angular flux coefficients are defined as

φlm(~r, E ′, t) =

∫
dΩ′ Ylm(Ω′)ψ(~r, Ω̂′, E ′, t), (1.9)
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which yields

qs(~r, Ω̂, E, t) =
L∑
l=0

l∑
m=−l

Y ∗
lm(Ω̂)

∫
dE ′ σsl(~r, E

′ → E, t)φlm(~r, E ′, t). (1.10)

This form of the scattering term when combined with an angular quadrature, the

discrete ordinates approximation, results in a finite set of equations where the an-

gular dependence has been explicitly eliminated. Given an angular quadrature of N

ordinates, the angular flux coefficients can be determined from

φlm(~r, E ′, t) =
[
w1Ylm(Ω̂1)...wNYlm(Ω̂N)

]
ψ1(~r, E

′, t)
...

ψN(~r, E ′, t)

 , (1.11)

where the matrix on the left has rows of l and m and wN are the angular quadrature

weights. In slab geometry, the spherical harmonics functions reduce to Legendre

polynomials due to symmetry. In XY geometry, the spherical harmonics functions

reduce to just the even terms. However, in XYZ geometry the spherical harmonic

functions do not simplify.

Having discretized the angular dependence, we now seek to discretize the en-

ergy dependence. The energy discretization approach used in almost all deterministic

methods is the multigroup approximation, which divides the continuous energy range

into a finite set of groups. This transforms the integration over energy into a summa-

tion over the energy groups. The multigroup approximation defines the group angular

flux (ψg) as

ψg(~r, Ω̂, t) =

∫ Eg−1

Eg

dE ψ(~r, Ω̂, E, t) =

∫
g

dE ψ(~r, Ω̂, E, t), (1.12)

where g is the energy group index such that g ∈ [1, G], where G is the total number

of energy groups. The above definition transforms the BTE into a coupled set of

monoenergetic transport equations, which are then solved by iteration.
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The first step in deriving the within-group transport equation is the integration

of equation (1.1) over an energy group, g, yielding

[
1

vg

∂

∂t
+ Ω̂ · ~∇

] ∫
g

dE ψ(~r, Ω̂, E, t) +

∫
g

dE σ(~r, E, t)ψ(~r, Ω̂, E, t)

=
G∑

g′=1

∫
g

dE

∫
g′

dE ′
∫

dΩ′ σs(~r, E
′ → E, Ω̂′ · Ω̂, t)ψ(~r, Ω̂′, E ′, t)

+

∫
g

dE χ(E)
G∑

g′=1

∫
g

dE ′ νσf (~r, E
′, t)

∫
dΩ′ ψ(~r, Ω̂′, E ′, t)

+

∫
g

dE qe(~r, Ω̂, E, t), (1.13)

where vg is the group velocity. Because the neutron velocity, v, is a continuous

function of energy and the angular flux ψ is integrable in the same domain, then the

first mean value theorem for integration allows

∫
g

dE
1

v(E)

∂ψ

∂t
=

1

v(ξ)

∫
g

dE
∂ψ

∂t
, (1.14)

where ξ is some energy within the group. Group cross-sections, fission spectrum, and

fixed source can be defined as follows (Lewis & Miller [22]) to simplify the represen-

tation

σg(~r, Ω̂, t) =

∫
g
dE σ(~r, E, t)ψ(~r, Ω̂, E, t)

ψg(~r, Ω̂, t)
, (1.15)

χg =

∫
g

dE χ(E), (1.16)

νσfg(~r, t) =

∫
g
dE νσf (~r, E, t)

∫
dΩ ψ(~r, Ω̂, E, t)∫

dΩ ′ψg(~r, Ω̂′, t)
(1.17)

and

qe
g(~r, Ω̂, t) =

∫
g

dE qe(~r, Ω̂, E, t). (1.18)

The multigroup group-to-group scattering cross section, σs, is considerably more com-

plicated to define. The typical approach is to apply the discrete ordinates approxi-
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mation, which yields

σlgg′(~r, t) =

∫
g
dE

∫
g′

dE ′ σsl(~r, E
′ → E, t)φlm(~r, E ′, t)

φlmg′(~r, t)
, (1.19)

where

φlm(~r, E ′, t) =

∫
dΩ Ylm(Ω̂)ψ(~r, Ω̂, E ′, t) (1.20)

and

φlmg′(~r, t) =

∫
dΩ Ylm(Ω̂)ψg′(~r, Ω̂, t). (1.21)

While an angular dependence to the multigroup total cross section, σg, has been

introduced, it can be eliminated by using a spherical harmonics expansion. Applying

the discrete ordinates approximation, the multigroup form of the BTE is

[
1

vg

∂

∂t
+ Ω̂n · ~∇+ σg(~r, t)

]
ψg(~r, Ω̂n, t)

=
∞∑
l=0

l∑
m=−l

Y ∗
lm(Ω̂n)

G∑
g′=1

σlgg′(~r, t)φlmg′(~r, t)

+ χg

G∑
g′=1

νσfg′φg′(~r, t) + qe
g(~r, Ω̂n, t), (1.22)

where φg is the group scalar flux. Segregating the within-group g from the scattering

source yields the within-group BTE1

[
1

vg

∂

∂t
+ Ω̂n · ~∇+ σg(~r, t)

]
ψg(~r, Ω̂n, t)

=
L∑
l=0

(2l + 1)Pl(Ω̂n)σlgg(~r, t)φlg(~r, t) + qg(~r, Ω̂n, t), (1.23)

where qg represents all the contributions to group g due to scatter from other energy

groups (downscatter and upscatter), fission, and the fixed emitter.

1 The within-group fission source is typically not segregated and is treated as a known value
which is re-evaluated after the within-group solution is determined (Carlson & Lathrop [9]).
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1.1.1 Source Iteration. The standard method for solving the within-group

BTE is the scattering source iteration (SI), which is based on the von Neumann series

solution. The angular flux, ψ, can be decomposed into the sum of collided angular flux

contributions, ψ̃m. The ψ̃m take on the physical significance that ψ̃0 is the uncollided

flux, ψ̃1 is the one-collision flux, etc. We can define a series of iterates (Lewis &

Miller [22]), such that

ψ0 = 0

ψ1 = ψ̃0

...

ψl+1 =
l∑

m=0

ψ̃m. (1.24)

Thus, ψl+1 is the flux of neutrons that have had l or fewer collisions. A consequence

of this method is that a problem that has a scattering-to-total cross section ratio, c,

approaching unity requires an increasing number of iterations in order to converge to

a solution. Furthermore, while the individual contribution to the angular flux from a

specific iterate ψ̃m, wherem is large, might be small, the sum of the contributions from

the high scatter iterates is not necessarily small. This can cause the source iteration

method to falsely converge to a solution by terminating the iteration prematurely.

In order to accelerate convergence to a solution, a variety of techniques are used,

the most common one being diffusion synthetic acceleration (Alcouffe [3]). Using

diffusion synthetic acceleration with source iteration is a well established method

used extensively in production codes.

Diffusion synthetic acceleration generally performs well for a broad range of

problems; however, it does lose effectiveness if the problem does not exhibit sufficient

diffusive behavior. Furthermore, it is particularly difficult to implement the newer,

better performing spatial quadratures that have been recently developed into diffusion

synthetic acceleration. While other accelerators exist, none of them are a panacea.
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1.1.2 Distribution Iteration. Distribution iteration (DI) offers several ad-

vantages over the more traditional source iteration method, most notably its rapid

convergence when the scattering-to-total ratio approaches unity and its inherently

parallel nature (Wager [32] and Prins [28]). The central idea behind DI is to reduce

the global transport problem into a coupled-cell partial current problem that can be

solved directly. The basic DI algorithm is shown in Algorithm 1.1. DI differs from

source iteration in that it solves the contribution due to scattering directly and does

not iterate on the scattering source. This key difference eliminates the need to use an

accelerator to reduce the number of iterations required for convergence.

Guess the angular flux distribution on each face, e.g. isotropic
Compute the within group source due to fixed emission sources
repeat

Use the angular flux distributions to determine the face-to-face transport prob-
abilities
Solve for the partial currents using the face-to-face transport probabilities
Compute the within-group scattering source using the partial current solution
and the angular flux distributions
Refine the angular flux distributions

until the angular flux distributions are converged
Use the angular flux distributions and the partial currents to calculate the angular
and scalar fluxes.

Algorithm 1.1: Overview of the distribution iteration
algorithm.

1.2 Motivation

A reliable and robust time-dependent neutron transport code that can rapidly

converge to a solution is useful for a variety of applications, one example being the

determination of activation products in a fast-flux reactor. All current discrete ordi-

nates implementations of time-dependent transport use the source iteration algorithm

and exhibit poor performance for high scattering problems (Lewis & Miller [22] and

Reed [29]).

Prior to my research, the distribution iteration algorithm had been implemented

in slab and XY geometry for monoenergetic problems and isotropic emission sources.
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For distribution iteration to be useful in a production code, it needed to be extended

to support

• XYZ geometry

• multigroup transport

• time dependence

To have confidence that the distribution iteration algorithm is a suitable replacement

for accelerated source iteration, I needed to:

• Implement a formal test plan that demonstrates that the distribution iteration

algorithm correctly and reliably solves the discrete ordinates equations.

• To demonstrate the performance advantage that distribution iteration has over

accelerated source iteration.

1.3 Statement of the Problem

The problem was to develop a robust time-dependent algorithm using the distri-

bution iteration methodology and compare the performance relative to an established

code, e.g. PARTISN. The extension from slab to XY geometry is complicated because:

• The angular quadratures are more complicated.

• The implementation of spatial quadratures, particularly a characteristic method,

is more complicated.

• Mesh sweeps involve more than one pair of faces.

• The sparse matrix structure used to solve the partial current problem has a

more complex structure.

The extension from XY to XYZ geometry is conceptually simpler than the extension

from slab to XY geometry because the angular quadratures are similar, the spatial

quadratures are derived in a similar fashion, and the complexity of the mesh sweeps
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and the sparse matrix are comparable. However, a “just one more axis” approach

based on the work done by Prins [28] would make a complicated implementation into

an unmanageable software engineering problem and, hence, difficult to verify.

The DI algorithm as developed by Wager and Prins sometimes failed to con-

verge when only one or two inner iterations were used to refine the angular current

distribution per call to the partial current solver. Prins was able to achieve conver-

gence for his test problems by performing up to ten refinement iterations per call

to the partial current solver. Though this method did improve convergence, it was

not clear that it would work in all cases and it was an inefficient approach. Prins

attempted several other approaches to improve the refinement of the angular current

distribution, however, none of them were completely successful.

1.4 Goals of the Research

The work done by Wager [32] and Prins [28] demonstrated the robust perfor-

mance of DI for time-independent problems in slab and XY geometries. The conven-

tional algorithms for solving multiple energy groups and time dependent problems

work by modifying the emission density, q, and the total cross section, σ. The use of

DI with these algorithms has not been previously demonstrated and it is uncertain

whether the changes to the emission density and the total cross section will adversely

impact the performance of the DI algorithm.

The goals of this research were:

• Solving the time-dependent BTE using DI.

• Extending the time-dependent DI methodology to multiple energy groups.

• Extending DI to support XYZ geometry in a straightforward and methodical

manner.

• Improving the performance of the angular current distribution refinement algo-

rithm.
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• Demonstrating that DI is a viable substitute for source iteration.

The ultimate goal of my research was to build upon the previous work and demonstrate

that DI is a viable alternative to source iteration, either unaccelerated or accelerated,

for a broad range of transport problems.

1.5 Scope

To support the goals of my research, a multigroup, time-dependent transport

code utilizing DI was created. The code supports slab, XY and XYZ geometries

using a variety of spatial and angular quadratures. Time-dependent external sources

are supported and there is limited support for time-dependent material properties.

The formal verification effort was focused on slab geometry and XY geometry. The

verification of the XYZ geometry implementation was designed to take advantage of

common design basis between the XY and XYZ geometry implementations.

The verification testing was designed with two separate requirements. The first

requirement was to exercise specific aspects of the DI algorithm in order to check for

error in the corresponding code segments. The second requirement was to test the

parameter space, e.g. scattering ratio, in order to demonstrate that DI correctly and

robustly solves the discrete ordinates equations.

The data collected during the verification testing was then used to evaluate the

performance of both the distribution iteration and source iteration algorithms.

1.6 Assumptions and Limitations

Isotropic cross-sections are used in order to focus the research on the implemen-

tation of the DI method to time-dependent transport. While implementing higher-

order terms to support anisotropic scatter would not be difficult, it does add com-

plexity to the software and complicate verification testing.

The time-dependent material properties, such as density and composition, were

held constant during testing. The research did not address the implicit relationship
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between neutron flux and material properties. The software, however, was designed

to allow for changes in material properties.

The multigroup energy support in my research was limited to non-fissioning

materials. While adding support for fissioning problems is not complicated algorith-

mically, the effort required was better utilized towards the other research goals. A

demonstration of multigroup support based on up and downscatter is more than suf-

ficient to show the applicability of distribution iteration as a replacement for source

iteration.

The performance metric was limited to iteration count rather than run time

because iteration count provides an indication of the efficiency of the code. Run

time is a subjective assessment of a code because design requirements may result in

different performance trade-offs.

1.7 Approach

The first step was to determine a mathematical formulation of the time-dependent

BTE that was amenable to the distribution iteration approach and maintains a close

connection to the physics. Next, a one-dimensional, time-dependent distribution iter-

ation was implemented for monoenergetic problems and the performance of that code

was compared relative to PARTISN. Finally, the development of metrics for compar-

ing the performance relative to a benchmark was undertaken. Some of the points of

investigation were to:

• Evaluate the application of more robust spatial quadratures, such as first mo-

ment and characteristic methods.

• Evaluate time stepping methods.

• Evaluate methods to improve the propagation of global neutron partial currents.

The first version of the time-dependent DI code (DI-1) highlighted the require-

ment for a more effective algorithm for propagating global neutron partial currents in
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deep-penetration problems. Addressing that issue was undertaken during the devel-

opment of the XY geometry version of the code (DI-2).

The implementation of an improved time-stepping method was the next phase

of the research. The DI-1 code developed to support my research prospectus was

implemented using an implicit backward difference method to numerically approxi-

mate the time derivative. While this approach was straightforward, truncation error

affected the performance. The most obvious approach was to implement the mid-

point average method in lieu of the backward difference method utilized by DI-1. The

second version, DI-2, implemented both time stepping methods.

The implementation of XYZ geometry was accomplished in the third version

(DI-3) of my transport code. The final phase was the extension of the code to support

multiple energy groups. This was the last phase because it is dependent on having a

robust monoenergetic implementation.

13



II. Theory

Numerical methods for solving time-dependent (evolutionary) partial differen-

tial equations can be characterized by how the time variable is treated and how the

extrapolation to a future state is performed. If all the derivatives–both spatial and

time–are represented with finite differences, then the method is fully discretized (Iser-

les [17]). For example, given
∂u

∂t
=
∂2u

∂x2
, (2.1)

then a fully discretized scheme using the forward Euler method can be expressed as

uj+1
l = ujl +

∆t

(∆x)2

(
ujl−1 − 2ujl + ujl+1

)
, (2.2)

where ∆t/(∆x)2 is the Courant number, and u is a vector of spatial values indexed by

l at times j and j + 1. An alternative method is the semi-discretization method. In

this formulation a partial differential equation is transformed into a coupled system

of ordinary differential equations. My research is based on fully discretized methods.

The means of extrapolating to the next time step can be categorized as either

explicit or implicit. An explicit method, such as Euler’s method, only utilizes values

from the current time step to compute values for the next time step. For example,

given
du

dt
= f(u, t) (2.3)

the time derivative is approximated by using a truncated Taylor series expansion as

du

dt

∣∣∣
tj

=
uj+1 − uj

∆t
. (2.4)

The differential equation can be solved for each time step by

uj+1 = uj + ∆tf(uj, tj). (2.5)
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Because the error term in the truncated Taylor series expansion is O(∆t2), the global

truncation error is first order. While the forward Euler method is convergent (Iserles

[17]), it is only conditionally stable. An alternative explicit method is the explicit

midpoint method defined as

uj+2 = uj + 2∆tf(uj+1, tj+1). (2.6)

The explicit midpoint method is classified as a multistep method and is second order.

An implicit method, such as the trapezoidal rule, utilizes values from multiple

time steps, including extrapolated values, to compute values for the next time step.

For example, for the backward Euler method, the time derivative is approximated as

du

dt

∣∣∣
tj+1

=
uj+1 − uj

∆t
. (2.7)

Thus, the differential equation is solved by

uj+1 = uj + ∆tf(uj+1, tj+1). (2.8)

The backward Euler method has the same local truncation error as the forward Euler

method and is also convergent. Unlike the forward Euler method, the backward Euler

method is unconditionally stable, which is a significant advantage when dealing with

stiff problems (Iserles [17]).

The primary disadvantage to using the backward Euler method is the first order

global truncation error. The trapezoidal rule,

uj+1 = uj +
∆t

2

(
f(uj+1, tj+1)− f(uj, tj)

)
, (2.9)

has second order global truncation error (Iserles [17]), is convergent and is uncondi-

tionally stable. The disadvantage to using the trapezoidal rule to solve the BTE is the

additional memory requirement for storing f(uj+1, tj+1) and f(uj, tj). The implicit
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midpoint method evaluates f at the midpoint between the steps j and j+1 and yields

uj+1 = uj + ∆tf

(
uj+1 + uj

2
, tj+1/2

)
(2.10)

and also has second order local truncation error.

An implicit method can be solved by making it into a semi-implicit method,

which means the method has been solved by linearization. The strategy behind

a semi-implicit method is to split the problem into two portions, one that will be

solved implicitly and another that will be solved explicitly. An example of a semi-

implicit method is PARTISN’s approach to solving the time-dependent BTE, which

is discussed in detail in section 2.4.4 and Appendix A. A simple illustration of a

semi-implicit method can be shown by solving the backward Euler method for f ,

f(uj+1, tj+1) =
uj+1 − uj

∆t
. (2.11)

Substituting for f into the forward Euler method yields

uj+2 = 2uj+1 − uj. (2.12)

Performing a Taylor series expansion of uj+2 and uj about uj+1 yields

uj+2 = uj+1 + ∆tf(uj+1, tj+1) +
(∆t)2

2
f ′(uj+1, tj+1) +O((∆t)3) (2.13)

and

uj = uj+1 −∆tf(uj+1, tj+1) +
(∆t)2

2
f ′(uj+1, tj+1)−O((∆t)3). (2.14)

Taking the difference between uj+2 and uj yields

uj+2 − uj = 2∆tf(uj+1, tj+1) +O((∆t)3), (2.15)

which is the explicit midpoint method and is second order.
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Before delving into the implementation of the time-dependent BTE in DI, it is

useful to cover some background involving the time-independent BTE.

2.1 Operator Notation

For clarity, the BTE can be represented in operator form as

V−1 ∂

∂t
Ψ = −BΨ +Qe (2.16)

where V is a diagonal matrix of neutron group velocities, Ψ is a vector containing

angular fluxes for each group, and Qe is a vector of embedded sources. The transport

operator B is

BΨ = (L− S)Ψ (2.17)

(LΨ)g = Ω̂ · ∇Ψg + σt(r, t)Ψg (2.18)

(SΨ)g =
∑
g′

∫
dΩ̂′ Kg′→g(~r, Ω̂

′ → Ω̂)Ψg′(~r, Ω̂
′), (2.19)

whereK represents the scattering kernel and σt is the total cross section. The operator

L represents losses and the operator S represents scattering sources.

2.2 Spatial Quadratures

Many spatial quadratures have been developed for use with the discrete ordi-

nates formulation of the BTE. The spatial quadratures can be broadly grouped as

zeroth moment and first moment methods. The zeroth moment methods only use cell

average values, e.g., cell average angular fluxes, while the first moment methods use

both the cell average values and the first spatial Legendre moments.

The most common zeroth moment methods are the Diamond Difference (DD),

Step Characteristic (SC) (Lathrop [20]), and Step approximations. The diamond
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difference spatial quadrature uses the auxiliary relationship (in slab geometry)

ψL + ψR = 2ψA, (2.20)

where ψL and ψR are the angular fluxes on the left and right boundaries, respectively.

The advantage to using diamond difference is the simplicity of its implementation

and second-order accuracy. The primary disadvantage is the fact that it will gener-

ate physically meaningless negative fluxes in some circumstances. The step spatial

quadrature uses the auxiliary relationships

ψR = ψA µ > 0 (2.21)

ψL = ψA µ < 0. (2.22)

The step spatial quadrature is simpler than diamond difference, however, it only has

first-order convergence, which makes it impractical to use in a production code. It is,

however, a “positive” method in the sense that it will always generate positive fluxes.

The step characteristic spatial quadrature is based on the assumption that particles

travel in straight lines between collisions. These straight lines are the characteristics

of the BTE and are represented by

dψ

ds
+ σtψ = q, (2.23)

where s is the path traveled by the particle. Without loss of generality, consider the

µ > 0 case. Integrating the characteristic equation yields

ψ(s) = ψLe−σts +

∫ s

0

ds′ q(s′)e−σt(s−s′). (2.24)

The step characteristic spatial quadrature has the simplifying approximation that

q(s) = qA, where qA is the cell average source. The advantage to using SC is that it
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is a positive method and has second-order convergence. The drawback to SC is that

it is difficult to generalize to non-rectangular coordinate systems.

The most common first moment methods are Linear Discontinuous (LD) (Hill

[15]) and Linear Characteristic (LC) (Larsen & Alcouffe [18]). The first moment

methods have the drawback of increased memory requirements, however, they do

exhibit a better rate of convergence than the zeroth moment methods. The linear

discontinuous spatial quadrature assumes that the flux is linear within a cell but

discontinuous with the flux in adjacent upstream cells. This method can produce

negative fluxes with optically thick cells. The linear characteristic method is similar

to the step characteristic method with a first-moment expansion for the source

q(x) = qAP0(x) + qXP1(x), (2.25)

where qX is the first moment and Pn are the Legendre polynomials shifted and scaled

in x. Though LD is not a positive method, it produces fewer negative fluxes than

DD.

There are new spatial quadratures that have been developed which have not

gained widespread acceptance. An important reason for the lack of acceptance is due

to the complexity of developing an accelerator for use with source iteration. Some

examples of the newer spatial quadratures are Exponential Discontinuous (Wareing

[34]), Nonlinear characteristic (Walters & Wareing [33]), Exponential Characteristic

(Mathews, Sjoden & Minor [25]) and Nonlinear Corner Balance (Castrianni & Adams

[10])

The negative fluxes can have a deleterious effect on the performance of a trans-

port code (Lathrop [20]). In multidimensional problems, the negative fluxes can slow

the rate of convergence or render the acceleration method used with source iteration

ineffective. The propagation of negative fluxes can result in a lack of stability for time

dependent problems. Traditionally, a negative flux fix-up is typically used with non-
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positive methods like DD. The drawback to using a negative flux fix-up is a slower

rate of convergence.

2.3 Distribution Iteration

Distribution iteration solves the BTE by solving two different aspects: the par-

tial current problem and the distribution of the angular partial currents on the cell

faces. The partial currents problem is a simplification of the transport problem into a

linear algebra problem that can be solved directly. The second aspect, solving for the

distribution of the angular partial currents, serves two purposes–providing the means

for improving the partial currents problem and, second, providing the solution to the

angular and scalar fluxes in each cell.

Before proceeding, a brief explanation on notation will help guide the reader

through the derivations that follow. The use of the vector decoration, e.g., ~J , denotes a

vector constructed from multiple faces. Symbols which are inherently vectors because

of the use of an angular quadrature, such as the cell average angular flux (ψA), are

not decorated. The rationale for restricting the use of the vector decoration was to

make it clear to the reader which variables are constructed from multiple faces. The

use of the“blackboard bold” style, e.g. M, denotes a matrix. I have also adopted

the convention of using the “e” superscript to denote all external contributions to the

within-group BTE.

The DI algorithm models the BTE as a collection of cells coupled together by

partial current flows of neutrons between the cells. An implicit representation of the

global partial currents problem can be expressed as (Mathews [24])

~J = ~Je + M ~J, (2.26)

where ~J is the vector form of all the partial currents across cell faces; ~Je is the emission

partial current due to scatter from other groups, fission, and fixed emitters; and M is

a matrix of the mean face-to-face transport probabilities.
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The advantage of (2.26) is that ~J is non-negative because each element of M is

non-negative, as is each element of ~Je. The implicit form does have the disadvantage

that an iterative solution will exhibit slow convergence for optically thick cells as

c→ 1 (Mathews [24]). Solving for ~J explicitly yields

~J = (I−M)−1 ~Je, (2.27)

where I is the identity matrix. If we apply synthetic division to the matrix inversion,

we have

(I−M)−1 = 1 + M + M2 + ..., (2.28)

thus the inverted matrix, which we identify as G, represents all possible transport

paths that a neutron might take over the entire spatial domain.

A method for determining the elements of the matrix M is required. The first

step is to formulate the equations for within-cell transport1 as

ψA = KψI~jin + KψEqe + KψSΣψA (2.29)

and

~jout = KOI~jin + KOEqe + KOSΣψA, (2.30)

where ψA is the cell average angular flux, ~jin is the inward flowing currents organized

on a per-cell basis and ~jout is the outward flowing currents organized on a per-cell

basis. The physical significance of each matrix is

• KOI accounts for the contribution from the uncollided neutrons to the cell out-

flow,

• KOE accounts for the contribution from the cell fixed emission source to the cell

outflow,

1I have adopted an angular partial current notation vice an angular flux notation.
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• KOS accounts for the contribution from the cell scattering source to the cell

outflow,

• KψI accounts for the contribution from the uncollided neutrons to the cell aver-

age angular flux,

• KψE accounts for the contribution from the cell fixed emission source to the cell

average angular flux,

• KψS accounts for the contribution from the cell scattering source to the cell

average angular flux, and

• Σ accounts for the scatters within the cell.

The K matrices are dependent upon the spatial quadrature scheme, angular quadra-

ture, and material properties.

Solving (2.29) for ψA yields

(
I−KψSΣ

)
ψA = KψI~jin + KψEqe, (2.31)

where I is the identity matrix. Let

L =
(
I−KψSΣ

)−1
. (2.32)

Applying synthetic division to the matrix inversion yields

L = I + KψSΣ +
(
KψSΣ

)2
+ ... (2.33)

Thus, the matrix L accounts for all combinations of transport within a cell–uncollided,

single collision, two collisions, etc.–and the cumulative contribution to the cell average

angular flux. Substituting in L yields

ψA = LKψI~jin + LKψEqe. (2.34)
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Substituting (2.34) into (2.30) yields

~jout =
(
KOI + KOSΣLKψI

)
~jin +

(
KOE + KOSΣLKψE

)
qe. (2.35)

The coefficient matrix and external angular partial current vector are defined as

moi = KOI + KOSΣLKψI (2.36)

and

~je =
(
KOE + KOSΣLKψE

)
qe. (2.37)

The partial currents vector ~Je is computed from the angular partial currents by us-

ing the angular quadrature weights. The angular quadrature weight matrix, W, is

constructed such that

~Jout = W~jout. (2.38)

The equation for the partial current for each cell is then

~J = Wmoi~jin + W~je. (2.39)

The inward flux distribution, ζ, is defined as

ζface(~r, Ω̂) =

∣∣∣Ω̂ · n̂outward
face

∣∣∣ψ(~r, Ω̂)∫
r̂′∈Γface

dΓ′
∫

Ω̂′·n̂outward
face <0

dΩ′
∣∣∣Ω̂′ · n̂outward

face

∣∣∣ψ(~r′, Ω̂′)
, (2.40)

where n̂outward
face is the outward normal on a cell face face. The flux distribution ζ

apportions the partial current on a cell face to the individual ordinates that constitute

the inward flow into a cell. The inward flux distribution can be represented in matrix

form as

Zcell,face =
~jin
cell,face

Jcell,face
, (2.41)

23



where Zcell,face is a subset of Z that, for a given cell and face, ~jin
cell,face is the portion of

~jin for a cell that corresponds to face and Jcell,face is the inward partial current for a

cell that corresponds to face, which is a scalar value. Using Z to eliminate ~jin yields

~J = WmoiZ ~J + W~jout
e . (2.42)

Thus, we can determine M from

M = WmoiZ (2.43)

and ~Je from

~Je = W~je. (2.44)

The basic algorithm for DI that I implemented in my research is summarized

in Algorithm 2.1. There are two key points in the algorithm that differ from the

implementations by Wager and Prins that I will briefly highlight. The most significant

point of departure is in the sweeping methodology. The cell outward angular partial

currents can be determined from the equation

~jout = KOI~jin + KOSΣLKψI~jin +~je. (2.45)

The cell outflow due to within-cell sources is defined as

~jos = A′~jin +~je, (2.46)

where

A′ = KOSΣLKψI. (2.47)

This change to the algorithm solves the stability problem that was inherent in the

previous algorithm. The algorithm used by Wager and Prins would update the scat-

tering source while sweeping while this algorithm computes the scattering source for
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all cells before sweeping. The Wager and Prins algorithm uses partially updated cell

inflows when calculating the scattering source, which can cause unstable behavior,

particularly in XY and XYZ geometry. My algorithm also has improved parallel ef-

ficiency because each cell can be calculated independently of the others. Also, the

contribution due to sources in each cell can be computed for all ordinates in a cell

using a sparse BLAS library.

The other point that bears further explanation is the phrase “Until Z stabilizes.”

Typically, only one iteration is needed to refine the inward current distribution. Dur-

ing the course of my research, there were some configurations that required more than

one iteration in order for DI to converge, but two always sufficed (in my testing). Al-

ternatively, one can iterate until the inward current distribution converges. In fact,

it is possible to solve the transport equation this way without explicitly solving for

the partial currents, but the “no partial current solver” is a poor algorithm: The

overall number of iterations increases because the refinement of the inward current

distribution does not propagate the cell-to-cell transport efficiently. There is, how-

ever, an optimization between the number of iterations required to refine the inward

current distribution in order to converge and the relative CPU cost between solving

the partial currents problem and refining the inward current distribution.

Because the computation of the angular flux distribution within the cell can

be performed independently of any other cell, parallelization can be accomplished

with modest effort. Furthermore, parallel implementations of linear solvers are well

established, which benefits the solution of the global partial currents problem.

2.3.1 Partial Currents in Slab Geometry. Before discussing the partial

currents in XYZ geometry, an example from slab geometry illustrates the basic termi-

nology. Figure 2.1 is a simple example illustrating the coupling between two slabs. Let

J+
i and J−i represent the partial currents in the positive µ and negative µ directions

for face i, respectively.
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Compute transport matrices (e.g. K, Σ, and W)
Initialize inward current distribution, Z (e.g. isotropic)

Compute within group source (~je and ~Je)
repeat

Compute M
Solve (I−M) ~J = ~Je

repeat
Compute the source outflow in each cell as ~jos = ~je + A′Z ~J
for each octant do

Initialize inward angular current, ~jin from boundary
for each cell in flow sequence do

Compute outward cell angular partial currents ~jout = KOI~jin +~jos

Propagate outward cell angular partial currents to neighboring cells as
new inward cell angular partial currents

end for
end for
Update Z using updated inward cell angular partial currents

until Z stabilizes
until Z converges

Algorithm 2.1: Distribution Iteration Algorithm

J+
1

J−1

J+
2

J−2

J+
3

J−3

Figure 2.1: Coupled Cells in Slab Geometry
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The partial currents shown in Figure 2.1 can be expressed as

J−1 = M−
1,1J

+
1 +M−

1,2J
−
2 + Je−1 (2.48)

J+
1 = M+

1,1J
−
1 + Je+1 (2.49)

J−2 = M−
2,2J

+
2 +M−

2,3J
−
3 + Je−2 (2.50)

J+
2 = M+

2,1J
+
1 +M+

2,2J
−
2 + Je+2 (2.51)

J−3 = M−
3,3J

+
3 + Je−3 (2.52)

J+
3 = M+

3,2J
+
2 +M+

3,3J
−
3 + Je+3 (2.53)

using the notation Mdirection
to,from to represent the mean probability that a neutron will

travel from face from to face to and Je±face is the fixed source current on a face in

either a positive or negative µ direction. When constructing the current vector ~J

from the individual J±i , I adopted the following convention:

~J =



J−1

J+
1

J−2

J+
2

...


. (2.54)

The individual m’s are used to construct a linear system that solves for the ~J current

vector, specifically (I−M) ~J = ~Je, where

M =



0 M−
1,1 M−

1,2 0 0 0 ...

M+
1,1 0 0 0 0 0 ...

0 0 0 M−
2,2 M−

2,3 0 ...

0 M+
2,1 M+

2,2 0 0 0 ...
...


. (2.55)
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2.3.2 Partial Currents in XYZ Geometry. Prins [28] developed an XY

geometry implementation of DI. Conceptually, the partial currents problem in XY

geometry can be considered the same as four slab geometry partial currents. The

four arrangements are the Left/Right coupling, the Top/Bottom coupling, and the

two diagonal couplings, Left/Bottom to Right/Top and Right/Bottom to Left/Top.

Extending into XYZ geometry involves extending those couplings into the Z direction.

By deconstructing the partial currents and treating all the cell faces identically, a

simple arrangement of cell faces into one vector is possible. One of my implementation

goals was to maximize the common code elements between the different geometries.

That goal leads to an extensible arrangement of the partial currents vector where all

the faces normal to the X axis (X faces) are grouped together, all the faces normal

to the Y axis (Y faces) are grouped together, and all the faces normal to the Z axis

(Z faces) are grouped together. In a slab geometry problem of Nx cells, there are

Nx + 1 faces. In XY geometry of Nx by Ny cells, there will be (Nx + 1)Ny X faces

and (Ny + 1)Nx Y faces. The partial current vector would then consist of a vector

containing a block of X faces and block of Y faces. In XYZ geometry of Nx by Ny by

Nz cells, there will be (Nx +1)NyNz X faces, (Ny +1)NxNz Y faces and (Nz +1)NxNy

Z faces. The partial current vector would be extended by a block of Z faces.

This arrangement of partial currents leads to an interesting arrangement of the

matrix I−M. The terms adjacent to the main diagonal are associated with the axial

Left/Right, Bottom/Top, and Back/Front transport. Off the diagonal are clusters

that are associated with the diagonal transport, e.g., Left/Top. Figure 2.2 shows a

graphical representation of the G matrix. The columns are labeled with the associated

inflow dimension and the rows are labeled with the associated outflow dimension.

2.3.3 Transport Coefficients in XYZ Geometry. Appendix B shows the

derivation of the transport coefficients for the step and diamond-difference spatial

quadratures in XYZ geometry. For diamond-difference to have positive fluxes, all the

transport coefficients must be positive. All the coefficients, except for the three axial
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X

X

Y Z

Y

Z

Figure 2.2: Graphical Representation of the Global Par-
tial Currents Matrix

transmission coefficients, are unconditionally positive. The three axial transmission

coefficients, KOI
xx, KOI

yy and KOI
zz , are positive if

(α− β)− 1 >
εy
2
, (2.56)

1− (α+ β) >
εy
2

(2.57)

and

(β − α)− 1 >
εy
2
, (2.58)

respectively, are satisfied. However, it is impossible for all three to hold. In fact, at

most only one can be satisfied. In the Sn angular quadrature, the positive coefficients

will be the ones closest to the axis. For example, if µ > η+ ξ for an ordinate, its KOI
xx

is positive and its KOI
yy and KOI

zz are negative.

The consequence of negative coefficients is that the angular flux, in the absence

of sufficiently strong within-cell sources, can be biased towards axial flows. This effect

is not unique to DI, it will also occur in the source iteration algorithm. Thus, in XYZ
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geometry, the use of diamond-difference can result in anisotropic flux distributions as

an artifact of the spatial quadrature.

In the DI algorithm, negative fluxes can cause problems with the inward angular

flux distribution. If some of the elements of ~jin are negative and the inward partial

current remains positive, then ζ will be negative where ~jin is negative. However, if

enough elements of ~jin are negative such that the partial current is negative, then ζ

will have the opposite polarity with respect to ~jin. The sign of ζ also affects the sign

of the elements of M, which can result in the additional production of negative partial

currents. As a result, the elements of the matrix Z can oscillate and not converge.

The conventional method for implementing a negative flux fix-up is not the best

approach in DI because it requires additional storage or more computations. Instead,

I developed a straightforward negative flux fix-up scheme that takes advantage of the

normalization of ζ. During a mesh sweep, if a negative current is generated, it is set

to zero. When the matrix Z is updated, the corrected angular partial current will not

contribute to the partial current, thus particle conservation is assured.

2.4 Time Discretization

The most established time dependent BTE transport codes are the 1972 TIMEX

code (Reed [30]), the 1976 TIMEX code (Hill [16]) and PARTISN (Alcouffe [4]). Some

of the other time-dependent codes that have been developed are TDTORT (Goluoglu

[14]), TDA (Time-Dependent ANISN) (Dupree [11]), and TRANZIT (Lathrop [21]).

2.4.1 TIMEX (1972) Implementation. The TIMEX (1972) code (Reed [30])

utilizes a first order Taylor series expansion of the time derivative to discretize the

time variable analogous to forward Euler. TIMEX (1972) also uses the multigroup

approximation to discretize energy and the discrete ordinates representation to dis-

cretize in angle. The BTE solved by TIMEX (1972) in slab geometry (Appendix A)
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in operator notation is

V−1 ∂

∂t
Ψj+1 + LΨj+1 = SΨj +Qe. (2.59)

Of particular interest is the manner in which the transport operator B from (2.17)

was split. The loss operator, L, operates on the angular flux at time j + 1 while the

scattering source operator, S, operates on the angular flux at time j. Reed notes [30]

that this approach is inaccurate, particularly when transient events occur, e.g., a delta

distributed source. It does have the advantage that it avoids using source iteration

to solve for the within-group scattering source. The TIMEX 1972 code implements

several strategies to overcome the inherent inaccuracy of this approach while still

avoiding using source iteration to solve for the within-group scattering source. The

details of those strategies are not relevant to my research because DI is used to solve

for the within-group scattering source.

The use of diamond difference as a spatial quadrature can result in negative

angular fluxes. As shown in Appendix A, this can occur when

(
1

v∆t
+ σt

)
>> 0, (2.60)

hence when there are large cells, large cross sections, or short time steps. TIMEX

(1972) has a zero flux fix-up scheme to account for this possibility.

One interesting feature used by TIMEX (1972) is the separation of the first

flight flux and first scatter source as a mechanism to handle sources delta distributed

in space and/or time. Delta distributed sources are problematic for any transport

code because short time steps are required to numerically resolve the source. This

presents two problems: first, the short time steps can cause the accumulation of error

due to loss of precision; and second, the short time steps can result in negative fluxes.

Because the transport operator B is linear, the angular flux can be represented

as Ψ = Ψu+Ψc where Ψu is the uncollided flux and Ψc is the collided flux. Substituting
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into (2.16) yields

V−1 ∂

∂t
Ψu + LΨu = Qe (2.61)

V−1 ∂

∂t
Ψc + LΨc = S(Ψu + Ψc) (2.62)

The uncollided flux can be solved analytically and its first collision scattered neutrons,

SΨu, are then used as the fixed source when solving the collided flux numerically.

2.4.2 TIMEX (1976) Implementation. The TIMEX (1976) (Hill [16]) code is

similar to the TIMEX (1972) code, the key differences being the addition of delayed

neutrons and the introduction of a synthetic cross section and a synthetic source.

Consider the divided difference approximation

∂ψ

∂t
≈ ψj+1 − ψj

∆t
(2.63)

where ψj+1 is the angular flux at tj+1, ψ
j is the angular flux at tj, and ∆t is the time

interval tj+1 − tj. Substituting (2.63) into the BTE yields

1

vg∆t

(
ψj+1
g − ψjg

)
+ Ω̂ · ∇ψj+1

g + σj+1
tg

ψj+1
g =

g−1∑
g′=1

σj+1
sg′→g

φj+1
g′ +

G∑
g′=g

σjsg′→g
φjg′ + qj+1

g . (2.64)

Collecting the ψj+1
g terms and moving the ψjg to the right hand side yields

Ω̂ · ∇ψj+1
g +

[
σj+1

tg
+

1

vg∆t

]
ψj+1
g =

g−1∑
g′=1

σj+1
sg′→g

φj+1
g′ +

G∑
g′=g

σjsg′→g
φjg′ + qj+1

g +
1

vg∆t
ψjg. (2.65)
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Define the synthetic total cross section, σ̃tg , as

σ̃j+1
tg

= σj+1
tg

+
1

vg∆t
, (2.66)

and the synthetic source, q̃g, as

q̃j+1
g = qj+1

g +
1

vg∆t
ψjg (2.67)

so that

Ω̂ · ∇ψj+1
g + σ̃j+1

tg
ψj+1
g =

g−1∑
g′=1

σj+1
sg′→g

φj+1
g′ +

G∑
g′=g

σjsg′→g
φjg′ + q̃j+1

g , (2.68)

which is in the same form as the stationary BTE. The TIMEX (1976) code used

a time-independent transport code, specifically ONETRAN (Hill [15]), to solve this

stationary BTE.

The authors of the TIMEX (1976) (Hill [16]) state that they would prefer to

solve the implicit form

V−1 ∂

∂t
Ψj+1 + LΨj+1 = SΨj+1 +Qe. (2.69)

The implicit form was not used because of the amount of computer time that would

be required. For example, ONETRAN required 5.5 minutes on a CDC 7600 to solve a

20 group, 134 interval spatial mesh, S4 keff calculation (Hill [15]). The transformation

of the time-dependent BTE by using the synthetic cross section points to the logi-

cal approach of using an established time-independent transport code to solve time

dependent problems.

2.4.3 Implicit Backward Euler. Before proceeding to PARTISN, it is useful

to examine the implicit implementation of (2.69). The implicit in time version of the
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within-group BTE is

Ω̂ · ∇ψj+1
g + σ̃j+1

tg
ψj+1
g = σj+1

sg→g
φj+1
g +

g−1∑
g′=1

σj+1
sg′→g

φj+1
g′ +

G∑
g′=g+1

σjsg′→g
φjg′ + q̃j+1

g . (2.70)

While both the explicit form, which is used by TIMEX, and the implicit form have first

order local truncation error, the implicit form has the advantage of being numerically

stable (Lewis & Miller [22]).

One of the key challenges in using the synthetic cross section is selecting the

time step. Consider the monoenergetic, synthetic BTE in slab geometry (suppressing

the indices for clarity)

µ

∆x

(
ψR − ψL

)
+ σ̃tψ

A = σsφ+ q̃. (2.71)

Let ε be the optical depth, defined as

ε =
σ∆x

µ
. (2.72)

The choice of spatial quadrature will dictate a maximum optical thickness, εtol, that

is acceptable. The maximum cell size is then

∆xmax ≤
|µmin|
σ̃t

εtol. (2.73)

Clearly as v∆t→ 0, the synthetic cross section becomes large and the maximum cell

size goes to zero. Conversely, as v∆t → ∞, the time dependent behavior is lost and

σ̃t → σt.

The Courant-Friedrichs-Lewy condition requires that

v∆t

∆x
≤ 1. (2.74)
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Making the substitution for ∆xmax into the Courant-Friedrichs-Lewy condition yields

v∆t
|µmin|
σ̃t

εtol
≤ 1, (2.75)

which, after substituting for σ̃t to get σt, yields the constraint

0 < ∆t ≤ 1

σt

(
|µmin|εtol − 1

v

)
. (2.76)

Because both σt and v are positive, then

|µmin|εtol − 1 > 0 (2.77)

must be true in order to have positive time steps. The above constraint can be written

as

εtol >
1

|µmin|
, (2.78)

thus, for time dependent problems, spatial performance decreases as the angular

quadrature is refined. Picking the appropriate time step requires balancing angu-

lar resolution and spatial resolution requirements. This constraint also makes the use

of non-positive spatial quadratures, such as diamond-difference, in time-dependent

transport problematic. Diamond-difference in slab geometry, for example, requires

that

∆x < 2
|µmin|
σ̃t

(2.79)

be true to ensure positive fluxes. Applying the requirement for ∆xmax yields the

constraint

εtol < 2. (2.80)

Thus, to maintain positivity in slab geometry, the angular quadrature must have

|µmin| > 1/2, which in the Sn angular quadrature is only true with S2. If a negative

flux fix-up scheme is implemented, the flux will be biased towards the ordinates that

meet the constraint.
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While it is possible for monoenergetic problems to pick a time step that results

in a reasonable optical thickness, e.g.

∆t ∼ 1

vσt

, (2.81)

the speed differential between thermal and fast neutrons makes picking a uniform

time step for multigroup problems impossible. Fast neutrons are approximately 6000

times faster than thermal neutrons, which can result in synthetic cross sections that

are 10 to 1000 times larger between energy groups.

Multigroup problems that only have downscatter can mitigate the time step

issue by using a different time step for each energy group. However, if there is both

upscatter and downscatter, this approach becomes unworkable because temporal res-

olution has to be created when going from a longer time step energy group to a shorter

time step energy group. Similarly, if different spatial grids are used for each energy

group, spatial resolution has to be created when going from a coarse grid to a fine

grid.

Given the difficulty of picking an appropriate time step that works equally well

for all energy groups, the best solution would be to use a spatial quadrature that is

non-negative and works with optically thick cells. The alternative is to use fixups

in the transport code such that it maintains adequate performance with optically

thick cells. The latter approach has been taken in production codes and, thus, DI

has to demonstrate equivalent performance with optically thick cells in order to be a

substitute for source iteration.

2.4.4 PARTISN Implementation. PARTISN implements a semi-implicit

method to discretize the time derivative in the BTE. Unlike the TIMEX codes, PAR-

TISN is implicit in time and the extrapolated angular fluxes are second order accurate.

Appendix A shows the derivation as presented by Alcouffe & Baker.
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Like TIMEX (1976), PARTISN utilizes a time-independent code, in this case

DANTSYS, to solve the BTE at the midpoint between time steps. If the extrapolated

flux is negative, a set to zero fix-up strategy is utilized in conjunction with the balance

equation. Because PARTISN uses an implicit method for solving the midpoint flux,

it is numerically stable. The set to zero fix-up can result in less than second order

convergence.

2.4.5 TDTORT Implementation. TDTORT implements a flux synthesis

method (Goluoglu [14]), which assumes that time dependence is partially separable,

i.e.,

Φ(~r, Ω̂, E, t) = Ψ(~r, Ω̂, E, t)T (t). (2.82)

The function Φ(~r, Ω̂, E, t) is assumed to be composed of a shape function, Ψ, that is

slowly varying in time and an amplitude function, T , that is typically rapidly varying

in time. After substituting (2.82) into the time-dependent BTE and dividing by T (t),

we have

[
Ω̂ · ∇+ σt(~r, E, t)

]
Ψ(~r, Ω̂, E, t) =∫ ∞

0

dE ′
∫

dΩ′ σs(~r, E
′ → E, Ω̂′ · Ω̂, t)Ψ(~r, Ω̂′, E ′, t)

+ qe(~r, Ω̂, E, t)− 1

v

(
dT (t)

dt

Ψ(~r, Ω̂, E, t)

T (t)
+
∂

∂t
Ψ(~r, Ω̂, E, t)

)
. (2.83)

The advantage of decomposing the angular flux distribution in this manner is that

TDTORT can utilize large time steps when solving the shape function and shorter

time steps when solving the amplitude function. I did not implement this method in

my code.

2.5 Time-Dependent Distribution Iteration

The key to DI is the separation of the within cell transport from the global

partial currents problem. One step in affecting that separation is the integration over
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the spatial cell, which transforms the problem into a coupled set of partial currents

that can be solved exactly. Starting from the within-group BTE in slab geometry

1

v

∂ψn(x, t)

∂t
+ µn

∂ψn(x, t)

∂x
+ σt(x, t)ψn(x, t) = qn(x, t), (2.84)

where n is the ordinate index, and averaging over the spatial cell yields

1

∆x

∫ xR

xL

1

v

∂ψn(x, t)

∂t
dx +

1

∆x

∫ xR

xL

µn
∂ψn(x, t)

∂x
dx

+
1

∆x

∫ xR

xL

σt(x, t)ψn(x, t)dx =
1

∆x

∫ xR

xL

qn(x, t)dx , (2.85)

where ∆x = xR − xL. Using the first mean value theorem for integration, the cross

section term becomes

1

∆x

∫ xR

xL

σt(x, t)ψn(x, t)dx =
σt(ξ, t)

∆x

∫ xR

xL

ψn(x, t)dx (2.86)

where ξ ∈ [xL, xR] provided that σ(x, t) is continuous over the interval, which will be

true if cells do not span material boundaries. Define the cell average angular flux and

the cell average source, q̄, as

ψA
n,i(t) =

1

∆x

∫ xR

xL

ψn(x, t)dx (2.87)

q̄n,i(t) =
1

∆x

∫ xR

xL

qn(x, t)dx , (2.88)

where i indexes the cell. The BTE simplifies to

1

∆x

∫ xR

xL

1

v

∂ψn(x, t)

∂t
dx +

µn
∆x

(
ψR
n,i(t)− ψL

n,i(t)
)

+ σti
(t)ψA

n,i(t) = q̄n,i(t), (2.89)

where ψLn,i and ψRn,i are the angular flux distributions on the left and right cell bound-

aries, respectively.
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In order to achieve a more useful equation, the leading term needs the order of

the integration and differentiation interchanged. Assuming that ψ meets the criteria

for the Lebesgue dominated convergence theorem, which requires that the gradient

is finite almost everywhere in the domain2, then (because v is constant under the

multigroup energy discretization)

1

∆x

∫ xR

xL

1

v

∂ψn(x, t)

∂t
dx =

1

v∆x

∂

∂t

∫ xR

xL

ψn(x, t)dx . (2.90)

Thus, substituting (2.87) yields

1

v

dψA
n,i(t)

dt
+
µn
∆x

(
ψR
n,i(t)− ψL

n,i(t)
)

+ σti
(t)ψA

n,i(t) = q̄n,i(t). (2.91)

Applying the backward Euler method to the above ordinary differential equation,

yields

µn
∆x

(
ψR
n,i,j+1 − ψL

n,i,j+1

)
+

(
σti,j+1

+
1

v∆t

)
ψA
n,i,j+1 = q̄n,i,j+1 +

1

v∆t
ψA
n,i,j, (2.92)

where j is the time index.

A critical aspect about the synthetic total cross section approach is that it makes

the transport problem more absorptive than it would be otherwise. The synthetic

scattering ratio is

c̃ =
σs

σtj+1
+ 1

v∆t

. (2.93)

As v∆t → 0, the synthetic scattering ratio goes to zero. This raises the question as

to whether DI will maintain a performance advantage vis-a-vis source iteration. The

synthetic total cross section also makes the cells optically thick, which may impact

the ability to determine the inward angular partial current distribution because of

the attenuation of the angular partial currents. For short time steps, very few neu-

2Because this may not be strictly true for delta distributed sources, a first flux and first scatter
source approach may be necessary
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trons propagate across the cell, which makes the angular partial current distribution

susceptible to numerical noise.

2.5.1 Derivation of Diamond Difference with Time Dependence. In this sec-

tion, I will show the derivation of the diamond difference spatial quadrature transport

coefficients with the time derivative present. Start with the balance equation in slab

geometry, discretized with the backward Euler method

1

v

(
ψA
j+1 − ψA

j

∆t

)
+ µ

ψR
j+1 − ψL

j+1

∆x
+ σtj+1

ψA
j+1 = q̄j+1. (2.94)

Using the auxiliary equation to eliminate ψR from the equation yields

(
σtj+1

+
1

v∆t

)
ψA
j+1 +

µ

∆x

(
2ψA

j+1 − 2ψL
j+1

)
= q̄j+1 +

1

v∆t
ψA
j . (2.95)

Let σ̃tj+1
= σtj+1

+ 1/(v∆t) and ε̃x = σ̃∆x/µ, then

ψA
j+1 =

q̄j+1
∆x
µ

+ 2ψL
j+1 + 1

v∆t
∆x
µ
ψA
j

ε̃x + 2
. (2.96)

Substituting q̃j+1 = q̄j+1 + 1
v∆t

ψA
j yields

ψA
j+1 =

q̃j+1
∆x
µ

+ 2ψL
j+1

ε̃x + 2
, (2.97)

which is the same form for ψA as for the time-independent case. Using the synthetic

total cross section and synthetic source, any spatial quadrature can be used in a

time-dependent transport code.

2.5.2 Derivation of Step Characteristic with Time Dependence. It is useful

to show the derivation of a characteristic method in a time dependent form. To derive

the step characteristic spatial quadrature with the time dependence term we begin
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with the BTE in slab geometry discretized with the backward Euler method:

1

v

(
ψj+1 − ψj

∆t

)
+ µ

∂ψj+1

∂x
+ σtj+1

ψj+1 = qj+1. (2.98)

Let σ̃tj+1
= σ[j + 1] + 1/(v∆t) and dividing by µ yields

∂ψj+1

∂x
+
σ̃tj+1

µ
ψj+1 =

1

µ
qj+1 +

1

µ

ψj
v∆t

. (2.99)

As explained in the previous section, the cross section is constant within a cell, thus

σ̃t is also constant within a cell. Define τ(x, xo) = (x−xo)σ̃tj+1
/µ where x and xo are

in the same cell. Multiplying by eτ(x,xo), we have

∂ψj+1

∂x
eτ(x,xo) +

σ̃tj+1

µ
ψj+1e

τ(x,xo) =
1

µ
qj+1e

τ(x,xo) +
1

µ

ψj
v∆t

eτ(x,xo). (2.100)

Without loss of generality, we can consider the µ > 0 case. Noting that

∂

∂x

(
ψeτ(x,xo)

)
=
∂ψ

∂x
eτ(x,xo) +

σ̃t

µ
ψeτ(x,xo) (2.101)

and integrating (2.100) from xo = xL to x yields

ψj+1(x)e
τ(x,xL) − ψj+1(xL)eτ(xL,xL) =

∫ x

xL

dx′
qj+1(x

′)

µ
eτ(x

′,xL)

+

∫ x

xL

dx′
1

µv∆t
ψj(x

′)eτ(x
′,xL). (2.102)

Dividing by eτ(x,xL) and rearranging yields

ψj+1(x) = ψj+1(xL)e−τ(x,xL) +

∫ x

xL

dx′
qj+1(x

′)

µ
eτ(x

′,xL)−τ(x,xL)

+

∫ x

xL

dx′
1

µv∆t
ψj(x

′))eτ(x
′,xL)−τ(x,xL). (2.103)

Note that

τ(x′, xL)− τ(x, xL) = −(x− x′)σ̃tj+1
/µ (2.104)
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can be expressed as

τ(x′, xL)− τ(x, xL) = −ε̃x(x− x′)/∆x, (2.105)

where ε̃x = σ̃tj+1
∆x/µ. Let x = xR, then the transport equation for a generic cell is

ψR
j+1 = ψL

j+1e
−ε̃x +

∫ xR

xL

dx′
qj+1(x

′)

µ
e−ε̃x(xR−x′)/∆x

+

∫ xR

xL

dx′
1

µv∆t
ψj(x

′)e−ε̃x(xR−x′)/∆x. (2.106)

For step characteristic, the underlying assumption is that the scattering and emission

source is constant in a cell, thus

qj+1(x) = q̄j+1. (2.107)

Define the exponential moment function as (Mathews [25])

Mn(ε) =

∫ 1

0

(1− u)ne−εudu . (2.108)

Using the transformation u = (xR − x′)/∆x, the source term can be rewritten as

q̄j+1

µ

∫ xR

xL

dx′ e−ε̃x(xR−x′)/∆x = q̄j+1
∆x

µ

∫ 1

0

du e−ε̃xu (2.109)

= q̄j+1
∆x

µ
M0(ε̃x). (2.110)

Note that q̄j+1∆x/µ is the integrated production rate density of particles through the

cell along the ray and M0(ε̃x) is the fraction that reaches the right boundary. Making

the above substitution yields

ψR
j+1 = ψL

j+1e
−ε̃x + q̄j+1

∆x

µ
M0(ε̃x) +

∫ xR

xL

dx′
1

µv∆t
ψj(x

′)e−ε̃x(xR−x′)/∆x. (2.111)
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Using the step approximation ψj(x) = ψA
j to perform the following integration

I =

∫ xR

xL

dx′ ψj(x
′)e−ε̃x(xR−x′)/∆x (2.112)

yields

1

v∆t

∆x

µ

∫ xR

xL

dx′

∆x
ψj(x

′)e−ε̃x(xR−x′)/∆x =
1

v∆t
ψA
j

∆x

µ
M0(ε̃x). (2.113)

Thus, we have

ψR
i,j+1 = ψL

i,j+1e
−ε̃x +

(
q̄i,j+1 +

1

v∆t
ψA
i,j

)
∆x

µ
M0(ε̃x). (2.114)

This is the same solution obtained when using the synthetic cross section and synthetic

source.

The cell average flux is defined as

ψA
j+1 =

∫ xR

xL

dx

∆x
ψj+1(x). (2.115)

Substituting in (2.103) and using the µ > 0 case produces

ψA
j+1 =

∫ xR

xL

dx

∆x
ψL
j+1e

−ε̃x(x−xL)/∆x +

∫ xR

xL

dx

∆x

q̄j+1

µ

∫ x

xL

dx′ e−ε̃x(x−x′)/∆x

+

∫ xR

xL

dx

∆x

∫ x

xL

dx′
ψj(x

′)

µv∆t
e−ε̃x(x−x′)/∆x. (2.116)

Using the exponential moment functions, this simplifies to

ψA
j+1 = ψL

j+1M0(ε̃x) +
∆x

µ
q̄j+1M1(ε̃x)

+

∫ xR

xL

dx

∆x

∫ x

xL

dx′
ψj(x

′)

µv∆t
e−ε̃x(x−x′)/∆x. (2.117)
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Next, the following integration needs to be performed

I =

∫ xR

xL

dx

∆x

∫ x

xL

dx′
ψj(x

′)

µv∆t
e−ε̃x(x−x′)/∆x. (2.118)

Using the step approximation to solve the integral I yields

ψA
j+1 = ψL

j+1M0(ε̃x) +
∆x

µ

(
q̄j+1 +

ψA
j

v∆t

)
M1(ε̃x). (2.119)

This is, again, the same equation obtained by using the synthetic cross section and

synthetic source.
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III. Matrix Albedo

While developing the verification plan (Chapter V) there was a need for a

non-discrete ordinates benchmark that was more accurate than a Monte Carlo code.

Ganapol [13] developed the TIEL benchmark, which uses a Fourier transform solution

based on an analytical moments representation of the Green’s function. The bench-

mark features a delta-distributed source in an infinite medium. The TIEL benchmark

is a semi-analytic solution to

[
µ
∂

∂x
+ 1

]
ψ(x, µ) =

c

2

L∑
l=0

ωlPl(µ)ψl(x) +
δ(x)

2
(3.1)

where ωl are the scattering moments, Pl are the Legendre polynomials and ψl(x) are

the Legendre moments given by

ψl(x) =
1

2

∫ 1

−1

dµ Pl(µ)ψ(x, µ). (3.2)

This benchmark presents two challenging problems. First, the delta-distributed source

must be adequately represented in the transport code and, second, the infinite medium

has to be properly handled. The other motivation for implementing this benchmark

is that it is similar to the monoenergetic, time dependent benchmark also developed

by Ganapol [12].

The delta-distributed source can be implemented in two different fashions. The

first method would be to introduce a single cell source region; however, this is a crude

approach because it effectively distributes the source into a small volume. An alter-

native approach would be to use a boundary current in conjunction with a symmetry

boundary condition.

Usually, an incident current is specified as a Lambertian source, i.e., the incident

flux is independent of direction. Alternatively, one can specify a source such that

the incident current is isotropically distributed (Appendix C). The delta-distributed

source in the TIEL benchmark is equivalent to an isotropically distributed incident
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current. Isotropic currents are particularly challenging because the incident flux is

singular as µ → 0. The accuracy of the incident current representation, therefore, is

dependent upon the order of the angular quadrature.

The implementation of an incident current with a non-vacuum boundary con-

dition is not a common feature found in production transport codes. I did implement

it in my DI code because it provided two different methods for utilizing the TIEL

benchmark.

3.1 Infinite Medium

While the treatment of the delta-distributed source is relatively straightforward,

the infinite medium is not as easy. There are traditionally two different approaches

to handling an infinite medium. The first method is to define a region much larger

than the region of interest and use vacuum boundaries. For example, if the region

of interest is 4 mean free paths from the origin, the problem might be defined as a

100 mean free path region. The second method is to utilize either a specular or grey

boundary condition and define a region smaller than the first method. Both of these

methods are deficient when the scattering ratio is non-zero. The first method will

underestimate the scalar flux because the contribution from the medium beyond the

defined region is omitted. The reflected angular flux distribution produced by either

the specular or the grey boundary conditions will be inaccurate (Figure 3.1).

None of these methods were acceptable in the verification testing because of the

difficulty of attributing the cause of any discrepancies between the results produced by

DI and the TIEL solution. Instead, a boundary condition that produces an accurate

reflected flux is required to reliably conduct the verification testing. Such a boundary

condition could be implemented as a matrix, which properly distributes the outgoing

flux to match the returning flux from an infinite medium.
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Figure 3.1: Conceptual flux distributions at a bound-
ary.

3.2 Matrix Albedo in Slab Geometry

Consider a region within the infinite medium that encompasses any points of

interest. Without loss of generality, consider only the right boundary by adding one

cell to the right boundary of the defined region. Define the angular flux vectors

entering and exiting the additional cell as shown in Figure 3.2. The outgoing fluxes

ψ+
L

ψ−L

ψ+
R

ψ−R

Figure 3.2: Region of interest with the one cell exten-
sion.

(ψ−L and ψ+
R) are related to the incoming fluxes (ψ+

L and ψ−R) through the expression

ψ−L
ψ+
R

 =

MLR MLL

MRR MRL

ψ−R
ψ+
L

 , (3.3)
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where MLR is the transmission coefficient matrix from the right face to the left face,

MLL is the reflection coefficient matrix for the left face, MRR is the reflection coefficient

matrix for the right face and MRL is the transmission coefficient matrix from the

left face to the right face. Recall that (2.35) expresses the relationship between the

outgoing currents (or fluxes) and incoming currents (or fluxes). Thus, the coefficient

matrices are extracted from the moi matrix on a flow direction basis. The columns of

the M matrices correspond to the inward flow and the rows correspond to the outward

flow. The MLL matrix, for example, is constructed by populating the elements where

the columns map to the positive ordinates and the rows map to the negative ordinates.

Define a matrix albedo at the boundar of the region of interest, A, such that

ψ−L = Aψ+
L . (3.4)

Because the extra cell is one cell of an infinite medium, the medium to the right of the

right boundary of the cell is identical to the medium to the right of the left boundary

of the cell, thus

ψ−R = Aψ+
R . (3.5)

If the incident flux ψ+
L is replaced with the identity matrix, which effectively is a

matrix constructed from the unit incident flux vectors for each ordinate, then

Ψ−
L = AI = A, (3.6)

where Ψ−
L is the return flux matrix. Let F be the incident flux matrix on the right

boundary, then

Ψ−
R = AF. (3.7)

Substituting into (3.3) yields

A

F

 =

MLR MLL

MRR MRL

AF

I

 . (3.8)
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One obvious method for solving the above equation for A is a form of source iteration.

Consider a flight of neutrons that enter the cell from the left. Some are reflected back

(A0 = MLLI) and some propagate to the right boundary (F0 = MRLI). A second

flight of neutrons enter the cell from the left. Again, some neutrons are reflected

plus there is a contribution from the neutrons that reflected after exiting the right

boundary (A1 = MLLI + MLRA0F0). The algorithm that implements this iteration is

shown in Algorithm 3.1. An alternative iteration strategy is shown in Algorithm 3.2.

I implemented both methods and there was no difference in performance.

Compute U = MLLMRL

repeat
Compute A = MLRU + MLL

Compute F = MRRU + MRL

Compute U = AF
until U converges

Algorithm 3.1: Iteration algorithm for determining the
matrix albedo

Compute U = MLLMRL

repeat
Compute A = MLRU + MLL

Solve (I− AMRR)U = AMRL for U
until U converges

Algorithm 3.2: Alternative iteration algorithm for de-
termining the matrix albedo
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IV. Implementation

I pursued my research effort in two parallel tracks. The first track was to

develop a robust time independent distribution iteration code. The second track

was to adapt the distribution iteration method into a time dependent scheme. The

essential element of the first track was the application of modern software engineering

methods to a nuclear engineering problem. The second track required the assessment

of the various mathematical treatments of the discretization of the time derivative.

These established the requirements for my implementation efforts.

4.1 Development of Time Independent Distribution Iteration Code

The implementation of the time-independent one-dimensional slab and two-

dimensional XY geometries followed the work of Wager [32] and Prins [28] closely.

Prins presented a block vector and matrix notation that captured the matrices and

vectors associated with X and Y dimensions into one set of equations. I followed

a logical approach and extended the notation to include the vectors and matrices

associated with the Z dimension.

4.1.1 Software Engineering Practices. I quickly decided to start with a

blank sheet and not reuse the software developed by Wager and Prins. The primary

reason was that during the course of their work, many avenues were explored which

contributed to needless complexity and residual constraints of their implementations

of the DI method. Cleaning the existing code would have been harder than starting

over. Another reason for starting over was the goal to extend DI into three dimensional

XYZ geometry. Having XYZ geometry as a design goal impacts the design of data

structures. The third reason was the fact that a time dependent algorithm was going

to be implemented using DI.

In the development of my DI code, I adopted several key practices that are used

in the software engineering field, including:

1. Using a source code management system;
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2. Testing to ensure that revisions do not prevent compilation or introduce error;

3. Committing changes to the source management system frequently.

The two key features that I wanted from a source code management system were the

ability to branch and to rollback changes. The ability to branch, that is to have a

separate development effort, from the main development effort is an important feature

to have in order to support concurrent research efforts. The second and third practices

resulted in a coding work flow that focused on making small incremental changes and

frequent testing.

Based on the development practices that I adopted, the strategy for developing

the DI code was to first implement a slab geometry version and verify its performance.

Once a working implementation of slab geometry was available, even though the

feature set was incomplete, the functional slab geometry was branched from the main

development effort. The code was then reviewed for the elements common between

XY and slab geometry. The common elements were separated from the geometry

specific elements and two libraries were created. An XY geometry specific library

was created, using the slab geometry specific library as a template. This resulted

in a functional code that consisted of a verified slab geometry component and an

unverified XY geometry component.

The main trunk development at this point was focused on verifying the perfor-

mance of the XY geometry and correcting errors. The test suite consisted of both

slab and XY geometry cases and changes were reviewed to make sure slab geome-

try performance was not affected. Additional features were added to slab geometry

to support research efforts outside the scope of this dissertation. Support for time

dependent transport was added and testing in slab geometry was performed. The

introduction of time dependent support at this juncture was done to ensure that the

evolution of the source code would be compatible with the goals of my research.

Once a functional and verified XY geometry implementation was available, the

slab and XY geometry implementation was branched and development of a XYZ ge-
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ometry implementation was started in the main trunk. The XY geometry specific

library was used as a template for the XYZ geometry. During the course of the

development of the XYZ geometry version, additional code elements that would be

common to all three geometries became evident; however, I did not attempt to ex-

tract these newly identified common elements because they required some substantial

changes to the code base. In keeping with the development principles that I adopted,

the extraction of the common elements would require a parallel development effort

and then a subsequent merge of the changes into the main development trunk. The

extraction of these common elements was deferred at this time; however, I recom-

mend that it be pursued prior to any work in developing a message passing interface

parallelized version.

4.2 Three Dimensional Geometry

The first step in developing the three-dimensional implementation of DI, or any

transport code for that matter, is to establish the cell orientation. Because I wanted to

maintain the orientation where the XY plane is normal to an observer’s line of sight,

the Z axis extends towards the observer in the positive Z direction. This arrangement

forms the basis of the arrangement of the cell faces, as shown in Figure 4.1. While

this arrangement is purely arbitrary, it does facilitate code reuse with the XY and

slab geometries.

Figure 4.1: Three-Dimensional Cube Orientation and
Face Naming

Given the arrangement of faces of a computational cell, the next step is to

establish an ordering convention for use when constructing the partial currents linear
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system. Again, I kept the order established in the XY geometry and added the Z

faces after the XY faces. This results in an arrangement where all the X faces (YZ

planes) are first, then the Y faces (XZ planes) and finally the Z faces (XY planes).

When implementing DI, one has to decide on whether to use angular fluxes or angular

currents to represent flows into and out of the cell. I used the current representation

because Prins [28] found that DI converges more rapidly with it than with the angular

flux representation.

4.2.1 Zeroth Spatial Moment Methods. In XYZ geometry, I adopted the

block vector and matrix notation used by Prins [28]. The cell face angular current

vector is

~j =
(
~jL ~jR ~jB ~jT ~jP ~jF

)T
, (4.1)

where ~jL is the current on the left face, ~jR is the current on the right face, ~jB is the

current on the bottom face, ~jT is the current on the top face, ~jP is the current on the

back face1 and ~jF is the current on the front face. The scattering and emission source

in a cell for a zeroth moment method is simply

qs = q̄s (4.2)

and

qe = q̄e (4.3)

where q̄s is the cell average scattering source and q̄e is the cell average emission source.

The system of discrete ordinates spatial quadrature equations for within-cell transport

is

~jout = KOI~jin + KOSqs + KOEqe (4.4)

and

ψA = KψI~jin + KψSqs + KψEqe. (4.5)

1The superscript “P” is from “Posterior” or, if you prefer, the Greek translation of back is πισω.
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As in the XY geometry case, we define the augmented KOI matrix:

KOI =



KOI
LL KOI

LR KOI
LB KOI

LT KOI
LP KOI

LF

KOI
RL KOI

RR KOI
RB KOI

RT KOI
RP KOI

RF

KOI
BL KOI

BR KOI
BB KOI

BT KOI
BP KOI

BF

KOI
TL KOI

TR KOI
TB KOI

TT KOI
TP KOI

TF

KOI
PL KOI

PR KOI
PB KOI

PT KOI
PP KOI

PF

KOI
FL KOI

FR KOI
FB KOI

FT KOI
FP KOI

FF


. (4.6)

The subscripts denote the combination of cell faces using the notation (to, from), e.g.,

the subscript “LT” is for flows to the Left face from the Top face. The submatrices,

e.g. KOI
LL, operate on a subvector of angular partial currents and are sized by the

number of ordinates. The KOI matrix has a very sparse structure because there is

no coupling between ordinates as a result of scattering. All the submatrices along

the main diagonal, e.g. KOI
LL, are zero matrices. The off-diagonal submatrices, e.g.

KOI
LR, only have non-zero elements where there is a coupling between an ordinate on

the inflow face and an ordinate on the outflow face. The location of the non-zero

elements, as well as the total number, in each submatrix depends upon the angular

quadrature used. For example, in the Sn angular quadrature there are n(n + 2)

ordinates, which results in a KOI matrix with dimensions of 6n(n + 2) × 6n(n + 2).

Each off-diagonal submatrix has n(n+2)/2 non-zero elements along its main diagonal

for a total of 15n(n+ 2).

The KOS and KOE matrices are

KOS =
(
KOS
L KOS

R KOS
B KOS

T KOS
P KOS

F

)T
(4.7)

KOE =
(
KOE
L KOE

R KOE
B KOE

T KOE
P KOE

F

)T
. (4.8)

For the above matrices, the subscript denotes the outflow face. Both the KOS and KOE

matrices are sparse–the non-zero elements are where an ordinate is in the outward
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direction for a face. For example, the KOE
L submatrix has non-zero elements for

ordinates where µ < 0.

The KψI matrix is defined as

KψI =
(
KψI
L KψI

R KψI
B KψI

T KψI
P KψI

F

)
. (4.9)

In the case of the KψI matrix, the subscript denotes the inflow face. The KψI matrix is

sparse as each submatrix is diagonal. For zeroth moment methods, the KψS and KψE

matrices are the same in slab, XY and XYZ geometries. The augmented scattering

matrix is defined as

Σ =


Σs 0 0

0 Σs 0

0 0 Σs

 , (4.10)

where Σs is the isotropic scattering matrix. For anisotropic scatter each submatrix

will be different. The Σs matrix is not sparse, though the augmented matrix, Σ, is

sparse.

While the augmented K and Σ matrices are large, the primary benefit of using

them is that the implementation becomes simpler. The large dimensions of the ma-

trices can be mitigated by representing them as sparse matrices and using a sparse

Basic Linear Algebra System library. For example, in the S8 angular quadrature, the

KOI matrix is 480× 480 with 2000 non-zero elements, which is less than one percent

of all the elements. The KOE and KOS are 480× 80 with 240 non-zero elements and

the KψI matrix is 80 × 480 with 480 non-zero elements. The Σ matrix is the most

dense matrix with a third of its elements being non-zero.

The solution of the within-cell transport equations follows directly from Math-

ews [24]. By using the augmented vector and matrix notation, we have the same set

of equations in slab, XY, and XYZ geometry.
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4.2.2 First Spatial Moment Methods. All the vectors and matrices can be

further expanded by adding the components for the first spatial moments in a block

fashion as demonstrated by Prins [24]. The use of the block notation allows the

implementation of a unified code that handles both zero and first spatial moment

methods.

4.2.3 Boundary Conditions. Boundary conditions can either be explicit or

implicit. An explicit boundary condition provides a known incoming flux (or current)

on the surface of the problem domain. An example of a explicit boundary condi-

tion is a Lambertian illumination (Appendix C). An implicit boundary condition

redistributes the outward flux back into the problem domain.

An incident illumination can either be specified as an angular flux, which is the

typical approach, or as a current. My DI code supports both notations to facilitate

my verification effort. Because I used the current representation, angular fluxes need

to be converted into partial currents (both ~J and ~j). For simplicity and to facilitate

angular quadrature refinement testing, I only implemented an isotropic angular flux

(a Lambertian illumination)—an anisotropic angular flux is a trivial modification of

the input file processor. For an incident current, the partial current and a distribu-

tion (Lambertian or Isotropic Surface Source) is specified as input. The code then

computes the angular partial current using the specified distribution.

Given an incident angular flux ψ(Ω̂), the inward partial current on face, J in
n is

given by

J in
n =

∫
n̂·Ω̂<0

dΩ |n̂ · Ω̂|ψ(Ω̂) (4.11)

where the subscript n denotes the face and n̂ is the outward unit vector normal to

the face. The inward current on a cell is ~jin
n (Ω̂) = |n̂ · Ω̂|ψ(Ω̂).

56



4.3 Implementing the Matrix Albedo Into Distribution Iteration

The matrix albedo was implemented in my DI code for slab geometry. Several

changes are required to implement the matrix albedo:

1. Calculate the transport coefficients, e.g. KOI, for the infinite medium material.

2. Calculate the moi matrix for the infinite medium material.

3. Implement a solver for the albedo matrix A.

4. Implement all boundary conditions, e.g. specular reflection, in matrix form and

use them when improving the inflow flux distribution.

5. Provide a routine to compute the reflection coefficient used in the partial current

solver.

Steps 1 and 2 were easy to implement in my DI code because the code necessary

to compute the coefficient matrices and moi was already implemented. The code was

implemented to permit the use of different materials on the left and right boundaries.

For example, a three region problem could have an infinite region of material “A” on

the left, a region of interest of finite length of material “B” and an infinite region of

material “C” on the left.

I implemented two different solvers for the matrix albedo (Mathews & Dishaw

[23]). Because both solvers are iterative solvers, care must be taken to avoid false

convergence. Both algorithms check for convergence using an iteration count doubling

strategy shown in Algorithm 4.1. This algorithm produced reliable results even in a

strongly scattering medium, e.g. c = 0.9.

In order to facilitate the use of specular and grey boundaries along with the infi-

nite medium matrix albedo boundary, all boundaries were represented with a matrix.

A specular boundary can be represented in matrix form as (where ordinate 1 and n
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Set iteration count to 1
Set check convergence to 2
Initialize Up to zero
repeat

Solve for U, e.g. Algorithm 3.1
if iteration count is equal to check convergence then

if Symmetric relative difference of U and Up less than tolerance then
Exit the iteration

end if
Up = U
Double the value of check convergence

end if
Increment iteration count

until Maximum number of iterations are exceeded
if Maximum number of iterations were exceeded then

Signal failure to converge
end if

Algorithm 4.1: Iteration count algorithm used to de-
termine if the matrix albedo has con-
verged.

form a reflection pair, 2 and n− 1 form another reflection pair, etc.)



jn/2+1

jn/2+2

...

jn−1

jn


=



0 0 . . . 0 α

0 0 . . . α 0
...

...
...

...
...

0 α . . . 0 0

α 0 . . . 0 0





j1

j2
...

jn/2−1

jn/2


, (4.12)

where α is the reflection coefficient (α = 1 is a symmetry boundary, α < 1 is a dirty

mirror). A grey boundary would have each row of the matrix filled in.

The matrix albedo requires the implementation of a method to determine the

reflection coefficient that will be used in the partial current solver. The reflection

coefficient at a face is defined as

αface =
J in
face

Jout
face

, (4.13)
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where Jout is the partial current leaving the region and J in is the partial current that

has been reflected back. Let Aface be the matrix albedo then, by definition,

J in = ~w · AfaceZfaceJ
out, (4.14)

where ~w is a vector of ordinate weights and Zface is the angular current distribution

for a face, which is a vector. The reflection coefficient is, therefore,

α = ~w · AfaceZface. (4.15)

4.4 Multigroup and Time Dependent Transport

The conventional approach for implementing time dependent and multigroup

transport is through an outer-iteration method. For example, in a time-independent

multigroup code the outer-iteration starts at the highest energy group and uses a

time-independent monoenergetic transport solver to determine the angular (or scalar)

fluxes for each energy group using the other group angular fluxes as part of the

external source for the within-group problem. For a problem where neutrons only

scatter downwards in energy, only one outer-iteration is required because the lower

energy groups do not couple to the higher energy groups. A problem that includes

the upscatter of neutrons or fission neutrons, multiple outer-iterations are required

because of the coupling of the energy groups.

Using the synthetic total cross-section and synthetic source method, time-dependent

problems can be solved using an outer-iteration method. Unlike multigroup trans-

port, only one iteration for all the time steps is required because there is no scat-

tering of neutrons to previous time steps. A combined time-dependent, multigroup

transport code would then consist of two outer-iterations, with the time-dependent

outer-iteration calling the multigroup iteration.

The implementation of a multigroup transport code involves a mechanism for

storing the group angular flux at each time step, an iteration that solves each energy
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group until all the group angular fluxes are converged, and a subroutine for calculating

the within-group external source. When using the DI method, storing the inward

angular partial current distribution for each energy group as the initialization (vice

isotropic) will offer a performance advantage.

The implicit backward Euler method serves as a useful starting point for adapt-

ing the DI method into a time-dependent algorithm. As shown in Section 2.5, the DI

method can be derived with the time-dependent form of the Boltzmann Transport

Equation. This method does not require any additional storage if careful use of the

cell average angular flux data structure is observed. The midpoint average method

that PARTISN utilizes does require a second copy of the cell average angular flux

data structure, thus the price in memory has to be weighed against the improved

accuracy in time. As in the multigroup implementation, a mechanism for storing and

retrieving the inward angular partial current distribution for the previous time step

will offer a performance advantage.
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V. Verification

To support my research, a formal approach to verification of the DI method

was needed. The primary reason for pursuing formal verification was to provide

a measure of confidence in the underlying code base before implementing the time

dependent version of DI. The secondary reason was to build upon the work performed

by Wager [32] and Prins [28] in establishing confidence in the DI method as a viable

alternative to the more established source-iteration based methods.

In the vernacular of the software testing field, the formalized testing of software

is described as “validation and verification” (V&V). Validation is a measure of the

software’s ability to perform in its intended application, e.g. the model is an adequate

analog to reality for the intended application. Verification is a measurement of the

accuracy and reliability of the implementation of a model. Verification does not

ascertain whether or not the implementation is suitable for an application. The

fidelity of the model combined with the verification of its implementation provides an

expectation of whether the combination is valid for a specified application.

For the purpose of my research, I focused on verification and did not pursue

validation. Because the discrete ordinates method which underlies DI has been studied

and analyzed for forty years and its applicability is well understood in the nuclear

engineering community. Furthermore, the focus of my research was to develop a more

robust implementation of the discrete ordinates method rather than to design towards

a specific application of discrete ordinates.

There is a hierarchy of models that is intimately part of a V&V effort. First,

there is the physical model which serves as the description of some physical process.

Next is the mathematical model that expresses the physical model. The mathematical

model can be expressed in a form to facilitate its numerical solution, e.g., discretiza-

tion. Finally there is the computer model, which is the model that is ultimately

implemented in software. Any one of these models can be the subject of validation

or verification.
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The purpose of verification is to identify deviations between the output of the im-

plementation of a model and the expected values [31]. The source of these deviations

can be attributed to uncertainty and error. Uncertainty can be further categorized as

reducible (epistemic) and irreducible (aleatoric). Epistemic uncertainty is the result

of insufficient information about the physical system. Aleatoric uncertainty is due to

the probabilistic distribution of the inputs, e.g. variation in the material properties.

Because the goal of my research is to develop an improved algorithm for solving dis-

crete ordinates, the effects of epistemic and aleatoric uncertainty are irrelevant and

need to be eliminated. Specifically, my research is focused on verifying that DI does

not introduce error in the solution of the discrete ordinates equations for a given spa-

tial and angular quadrature. In the aforementioned hierarchy of models, my research

is comparing the computer model, DI, to the numerical model. Thus, all sources

of uncertainty must be eliminated; for example, aleatoric uncertainty is eliminated

through the use of specified material properties rather than the use of real material

properties. This permits me to identify any sources of error in my implementation

rather than attempting to discriminate between deviations due to uncertainty and

those due to error. Because DI is based on discrete ordinates—thereby inheriting its

benefits and deficiencies—the use of a discrete ordinates based benchmark is not a sig-

nificant shortcoming. If experimental data were used instead, the effects of epistemic

and aleatoric uncertainty would need to be identified.

The verification approach that I implemented is a comparison with another

implementation of the discrete ordinates equations, specifically PARTISN version 4.00

(beta release 05-26-04)1 (Alcouffe [2]). A suite of test problems was constructed and

a suitable benchmark was selected. While the preferred benchmark is an analytic

solution, there is, unfortunately, a paucity of analytic benchmarks for the Boltzmann

Transport Equation. I categorize the benchmarks into the following classes:

• Analytic solutions,

1As of 21 July 2007 this was the only version available for distribution. Los Alamos National
Laboratory has not made a newer version available
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• Semi-analytic solution (e.g. Ganapol’s benchmarks [12] and [13]),

• Exact discretized solutions,

• Problems constructed to have specified solutions, i.e., manufactured problems,

and

• Established codes (e.g. PARTISN).

The use of analytic and semi-analytic benchmarks is not necessarily required for

the type of verification that I performed for my research. The analytic and semi-

analytic benchmarks are for verification of the underlying numerical model–discrete

ordinates–to the mathematical model–the Boltzmann Transport Equation. I included

them because I wanted to confirm that I was using PARTISN correctly and was

not introducing a common error. I did not use any manufactured problems in the

verification of my DI code.

5.1 Time-Independent Verification Tests

The suite of tests is first divided into the three supported geometries (Slab,

2D rectangular, and 3D boxoid). Grouping by geometry is required as the different

types of geometries introduce different testing requirements. The tests are further

subdivided as to whether the intent is to test a qualitative or quantitative aspect. This

subdivision is more for software development convenience than any other reason. The

qualitative tests were designed with automation in mind so that they could be run

frequently, typically before the source code was checked into the revision management

system and also during automated testing of a neutral build. This allowed for a

quick determination of whether the software development effort was on track. The

quantitative tests were designed to assess the correctness of the DI code. These tests

required greater analytical effort and were not fully automated.

Wager [32] and Prins [28] both demonstrated the performance of the Distribu-

tion Iteration method for a series of time-independent problems. Wager developed

DI originally and examined its performance in slab geometry and Prins extended DI
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to XY geometry. Both authors utilized a combination of analytic solutions and a

traditional source iteration code as benchmarks. The suite of tests was extended be-

yond what was required for verification in order to evaluate performance and develop

confidence in DI.

5.1.1 Slab Geometry. The performance of the time independent, slab geom-

etry DI method was evaluated by Wager [32]. Wager examined two test cases, the first

one was a single region problem and the second one was a periodic interface problem

consisting of two regions repeated ten times. Building from his work, I implemented

a series of tests designed to detect common programming errors and implementation

failures. The set of test problems is presented in the following list–the details of which

follow after the list (dimensions are in units of mean free path (MFP)):

1. Pure Absorber-Single region (σ = 1, c = 0, qe = 4.7, 32 mfp) and vacuum

boundaries;

2. Pure Scatterer-Single region (σ = 1, c = 1, qe = 4.7, 32 mfp) and vacuum

boundaries;

3. Infinite Medium-Single region (σ = 1, c = 0.5, qe = 4.7, 32 mfp), symmetry

boundaries;

4. Constant Source-Single region (σ = 0.1, c = 0.5, qe = 4.7, 3.2 mfp) vacuum

boundaries;

5. Left Isotropic Surface Source (Q = 0.5), 4 mfp-Single region (σ = 1, c = 0.9, qe =

0, 4 mfp), left symmetry boundary and right vacuum boundary;

6. Left Isotropic Surface Source (Q = 0.5), Infinite Medium-Single region (σ =

1, c = 0.9, qe = 0, Infinite), left symmetry boundary and right albedo matrix;

7. Left Lambertian Illumination (Q = 4.7), 4 mfp-Single Region (σ = 1, c =

0.9, qe = 0, 4 mfp), vacuum boundaries;
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8. 1D Periodic Interface, Cross-sections: Region A (σ = 10, c = 1.0, qe = 0, 10

mfp) Region B (σ = 0.1, c = 1.0, qe = 0, 0.1 mfp), Left Lambertian illumination

(Q = 4.7), vacuum boundaries;

9. 1D Periodic Interface, Scattering ratio: Region A (σ = 1, c = 1, qe = 0, 1 mfp)

Region B (σ = 1, c = 0, qe = 0, 1 mfp), Left Lambertian illumination (Q = 4.7),

vacuum boundaries;

10. 1D, Two Region, Scattering ratio test, Region A and B (σ = 1.0, S = 0, 2 mfp),

vacuum boundaries, left incident Lambertian illumination.

These benchmark problems form the basis of the different test scenarios as shown in

Table 5.1. In all cases, unless otherwise noted, the convergence criterion was that the

symmetric relative difference in ζ between iterations was less than 1×10−7 everywhere.

The symmetric relative difference is defined as

SRD(x, y) = 2
|x− y|
|x|+ |y|

. (5.1)

The key verification metric that I evaluated was the maximum symmetric relative

difference in the scalar flux computed by DI and the benchmark. If the maximum

symmetric relative difference between the two solutions was less than 10−6, then the

two solutions were in agreement. I also examined the rate of convergence as the spatial

mesh was refined for one of the test problems.

Because much of this work was performed by Wager, the focus of my effort was

to verify that I had correctly implemented the DI algorithm rather than a detailed

assessment of the algorithm. I did expand upon Wager’s assessment of DI’s perfor-

mance by comparing the performance of DI with a convergence-accelerated source

iteration code.

5.1.1.1 Tests 1 and 2. The single region pure absorber test (1) is the

simplest possible test and provides a useful starting point for developing a transport

code. The key advantage of this problem is the fact that it has an analytic solution,
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Table 5.1: Summary of time independent, slab geometry
tests.

Test Problem Analytic Exact PARTISN

Pure Absorber All DD/LD
Pure Scatterer DD/LD
Infinite Medium All DD/LD
Constant Source, Single-Region SC/LC/LD DD/LD
Isotropic Source, 4 mfp SC
Isotropic Source, Infinite Medium SC
Lambertian Source, 4 mfp, Vacuum DD/LD
Periodic Interface, Cross-sections DD/LD
Periodic Interface, Scattering ratio DD/LD

which greatly facilitates the debugging of a transport code. The complement to the

pure absorber test is the pure scatterer test (2). The primary utility of the pure

scatterer test is that it tests a different part of the transport code, which is useful for

debugging purposes. Using a spatial mesh of 256 uniformly spaced cells and the S8

and DP4 angular quadratures the solution produced by DI in both tests agreed with

the benchmark solutions.

I wanted to determine if there was a difference in accuracy between the single-

range and double-range angular quadratures. Carlson [8] asserts that the double-range

angular quadrature yields more accurate results for thin cells than the single-range

angular quadrature. Conversely, the single-range angular quadrature yields more ac-

curate results for thick cells because there is a higher probability of neutrons traveling

out of a cell in directions near µ = ±1 and the single-range angular quadrature has

ordinates closer to µ = ±1 than has the double-range angular quadrature.

To determine if there was such a difference between the two angular quadratures,

I used a variant of the pure absorber test. Instead of a uniform source, I used a

Lambertian illumination on the left boundary. The scalar flux on a cell face for a

66



Lambertian illumination is simply

φ(x) =
Q

2

(
e−xσ − xσΓ(0, xσ)

)
, (5.2)

where Γ(0, xσ) is the upper incomplete Gamma function. Using the S8 and DP4 an-

gular quadratures, I evaluated the symmetric relative difference between the resulting

cell face scalar fluxes and the exact solution. When using step characteristic, the

single-range angular quadrature did perform better when the cell size was greater

than 3 mean free paths (Figure 5.1). The linear discontinuous spatial quadrature,

which is not a positive spatial quadrature, did not exhibit as large of a performance

difference between the two angular quadratures. In fact, both angular quadratures

were ineffective when the cell size was large enough to cause negative fluxes (> 2

mfp). For both spatial quadratures, the double-range angular quadrature did have

superior accuracy for the thinner spatial cells, as asserted by Carlson.

5.1.1.2 Test 3. The infinite medium test (3) serves as an intermediate

test between the pure absorber and pure scatterer tests. The use of left and right

symmetry boundaries, as well as having c 6= 1, yields an analytic solution for the scalar

flux: φ = S/σa. Using a spatial mesh of 256 uniformly spaced cells and the S8 and

DP4 angular quadratures the solutions produced by DI agreed with the benchmark

solutions.

5.1.1.3 Test 4. The constant source, single region problem (4) served

as the basis for evaluating the convergence rate. Moderate scattering (c = 0.5) was

chosen to permit rapid convergence of unaccelerated source iteration. The spatial

mesh was refined from 4 cells to 65536 cells and the test was performed using the

various spatial quadratures (SC, DD, LD, and LC). Both single-range and double-

range Gauss-Legendre angular quadratures were used with 8 ordinates (S8 and DP4)

and the convergence tolerance was set to 10−7. Using a spatial mesh of 256 uniformly
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Figure 5.1: Comparison of the angular quadratures for
the step characteristic and linear discontin-
uous spatial quadratures.
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spaced cells and the S8 and DP4 angular quadratures the solutions produced by DI

agreed with the benchmark solutions.

The convergence rate for each spatial and angular quadrature combination was

determined by computing the maximum symmetric relative difference between the

cell face scalar flux for each cell width and the corresponding baseline solution. The

baseline solution for each combination was computed using a cell width of 4.88 ×

10−6. The observed rate of convergence for the different spatial quadratures for both

the S8 and DP4 angular quadratures agrees well with the analytical expectations

from Larsen [19] (Table 5.2). The LD and LC spatial quadratures are of particular

interest because of their high rate of convergence. Larsen demonstrated that the global

discretization error for LD and LC was O(∆x2) and O(∆x3), respectively. He further

demonstrated that LD and LC will exhibit a “superconvergence” in the cell-averaged

angular fluxes. The rate of convergence in the cell-averaged angular fluxes will be one

higher than the global discretization error. Furthermore, Larsen demonstrated that

the superconvergence of LD and LC also applies to cell-edge angular fluxes. Figures

5.2 to 5.5 show, for each of the four spatial quadratures, the maximum value of the

symmetric relative difference along with the convergence rate produced using a linear

fit. For LD and LC, some values were omitted when the cell size was small because

the solution had converged to the benchmark. For optically thick cells, some values

were omitted because there was additional sources of error, e.g. DD had negative

fluxes for very optically thick cells.

When this test was performed with a double-range Gauss-Legendre angular

quadrature and the total number of ordinates was still 8 (DP4), the number of itera-

tions required for convergence was unchanged. Note that, for optically thick cells, the

omitted values for the single-range angular quadrature results were closer to the con-

vergence rate line than the double-range angular quadrature results. The converse is

true for optically thin cells. This effect is the manifestation of the performance differ-

ence of the angular quadratures in optically thick versus optically thin cells mentioned

previously.
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Figure 5.2: Spatial mesh refinement convergence rate in
slab geometry using Distribution Iteration
and diamond difference.
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slab geometry using Distribution Iteration
and step characteristic.
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Figure 5.4: Spatial mesh refinement convergence rate in
slab geometry using Distribution Iteration
and linear discontinuous.
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Figure 5.5: Spatial mesh refinement convergence rate in
slab geometry using Distribution Iteration
and linear characteristic.

73



Table 5.2: Convergence rates for the constant source,
single region problem using the Distribution
Iteration algorithm.

Convergence Rate

Spatial Quadrature Single-Range Double-Range Analytic

DD 2.0 2.0 2
SC 2.0 2.0 2
LD 3.0 2.9 3
LC 3.8 3.9 4

5.1.1.4 Tests 5 and 6. The two problems with the left isotropic surface

source (5 and 6) were developed to exploit Ganapol’s TIEL benchmark. Both the 4

mfp and the infinite medium tests were also used to test left/right symmetry. Using a

spatial mesh of 2048 uniformly spaced cells and the S32 and DP16 angular quadratures,

the infinite medium test was compared with the TIEL benchmark and the scalar

flux was within the convergence tolerance except when too close to the source. The

agreement of the scalar flux in proximity to the isotropic surface source was dependent

upon the angular quadrature order; the higher the order the closer one could approach

the source.

5.1.1.5 Test 7. Ideally, the isotropic test would also be used with

the source iteration code, however this was not possible because PARTISN does not

permit a symmetry boundary and an incident current to share a surface. Instead I

developed a separate test using a Lambertian illumination of the left boundary and

left and right vacuum boundaries for comparing DI with the source iteration code.

The change from isotropic surface source to the Lambertian illumination was due to

the need to test the implementation of that source type within the DI test code. Using

a spatial mesh of 512 uniformly spaced cells and the S8 and DP4 angular quadratures

both DI and the source iteration solutions agreed to within the agreement tolerance.
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5.1.1.6 Tests 8 and 9. The periodic interface problems (8 and 9) are

used to assess performance in regimes where there is a repeated change in material

properties. These tests were inspired by the periodic horizontal interface problem

presented by Azmy [5]. Even though Azmy’s test was designed for XY geometry, it

does pose an interesting test case in slab geometry because it provides a mean to study

the how alternating material interfaces and deep penetration affect the performance

of DI.

Test 8 creates a strong discontinuity in total cross-section between pure-scattering

regions. In the high cross-section regions there is a strong scattering source causing an

isotropic angular flux being transported to the adjacent cells. The low cross-section

regions there is a weak scattering source, which results in a near streaming transport

of the inward fluxes to the adjacent cells.

These tests were conducted by growing the problem by adding a region pair,

which is just the combination of the two regions A and B. Using a spatial mesh of 64

uniformly spaced cells for each region and the S8 and DP4 angular quadratures, the

maximum value of the symmetric relative difference was within the convergence tol-

erance when using diffusion synthetic acceleration (DSA); however, for unaccelerated

source iteration and transport synthetic acceleration (TSA), the difference was larger

than the convergence tolerance (Figure 5.6). Note that PARTISN turned off DSA

after four region pairs because it was no longer effective. The reason for the lack of

agreement between DI and the solutions produced by SI is due to false convergence

on the part of SI. When DSA was enabled, the solutions produced by DI and SI were

in agreement. When DSA was disabled at five region pairs, the two solutions were no

longer in agreement.

Test 9 causes an alternating change in the angular distribution of the flux.

The c = 1 regions produce an outgoing isotropic angular flux distribution, while the

c = 0 regions produce an angular flux distribution that is biased towards the X-

axis. The combination of the scattering regions, which effectively divides the flux of
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Figure 5.6: Symmetric Relative Difference for the Peri-
odic Interface, Cross-Section Problem Using
Diamond-Difference and Single-Range

neutrons into leftward and rightward flows, and the absorbing regions results in a

diminishing neutron flux. This provides an opportunity to evaluate the performance

in deep penetration problems. Using a spatial mesh of 16 uniformly spaced cells for

each region and the S8 and DP4 angular quadratures, the agreement between DI and

PARTISN was within the convergence tolerance to about 28 (unaccelerated) to 33

(DSA) region pairs. Again, the lack of agreement between the DI solutions and SI

solutions is due to false convergence by SI.

5.1.1.7 Test 10. The two region scattering ratio test provides insight

into the performance of a transport code for a variety of material type interfaces

and was performed with both DI and PARTISN. Furthermore, the source iteration

code was run with no source acceleration, with DSA, and with TSA. The preferred

angular quadrature for an incident current problem is double-range Gauss-Legendre
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(DPn) because of its superior performance in solving for cell face angular fluxes2 and

was used in all cases except with TSA. PARTISN does not support the use of DPn

with TSA; therefore only the traditional Sn quadrature was used with TSA. Using a

spatial mesh of 16 uniformly spaced cells for each region and the S8 and DP4 angular

quadratures, the scalar fluxes calculated by DI in all cases were within the convergence

tolerance of the solutions generated by PARTISN.

5.1.2 XY Geometry. Prins [28] developed and examined the performance

of DI in XY geometry. I implemented a series of test cases similar to the ones used

in slab geometry. The set of test problems is presented in the following list:

1. Pure Absorber-Single region (σ = 1, c = 0, qe = 4.7, 32 mfp by 32 mfp) and

vacuum boundaries;

2. Pure Scatterer-Single region (σ = 1, c = 1, qe = 4.7, 32 mfp by 32 mfp) and

vacuum boundaries;

3. Infinite Medium-Single region (σ = 1, c = 0.5, qe = 4.7, 32 mfp by 32 mfp),

symmetry boundaries;

4. Constant Source-Single region (σ = 0.1, c = 0.5, qe = 4.7, 3.2 mfp by 32 mfp by

32 mfp), vacuum boundaries;

5. Left Isotropic Surface Source (Q = 0.5), 4 mfp-Single region (σ = 1, c = 0.9, qe =

0, 4 mfp by 4 mfp), left/top/bottom symmetry boundaries and right vacuum

boundary;

6. Left Isotropic Surface Source (Q = 0.5), 32 mfp-Single region (σ = 1, c =

0.9, qe = 0, 32 mfp by 4 mfp), left/top/bottom symmetry boundaries and right

vacuum boundary;

7. Left Lambertian Illumination (Q = 4.7), 4 mfp-Single Region (σ = 1, c =

0.9, qe = 0, 4 mfp by 4 mfp), vacuum boundaries;

2The Sn angular quadrature can be off by 1% or more for thin cells
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The only spatial quadrature in XY geometry in common between PARTISN and my

DI code was diamond difference. Also, all comparisons were done using the S4 angular

quadrature. The grid size in all test cases was set to 20 by 20; the only exception

being the left isotropic surface source test case which used a 40 by 40 for the 4 mfp

case and a 320 by 40 for the 32 mfp case.

The use of the diamond difference spatial quadrature is problematic in XY

geometry as it is possible to generate negative fluxes. While there are flux fix up

methodologies, there are drawbacks to using them. I deliberately decided to use

diamond difference in the verification effort because of the negative flux problem.

I wanted to evaluate the performance of DI when negative fluxes are generated as

this should make it difficult for DI to converge. In addition to diamond difference, I

implemented the step characteristic and linear characteristic spatial quadratures.

I did not perform any spatial mesh or angular quadrature refinement testing in

the XY geometry. The structure of my DI code in the XY and XYZ geometries was

designed to facilitate debugging and to provide a detailed look at how the solution is

progressing. As a result, it is neither memory nor computationally efficient. Also, the

implementation of the linear discontinuous spatial quadrature is necessary to provide

more reliable results that can be compared with PARTISN.

The tests in which both DI and PARTISN (unaccelerated and DSA) agree to

within the convergence tolerance are:

• Pure Absorber (Test 1)

• Infinite Medium (Test 3)

• Constant Source, Single-Region (Test 4)

• Lambertian Source, 4mfp, Vacuum (Test 7)

In the pure scatterer test (Test 2), only DSA agreed to within the convergence toler-

ance. Unaccelerated source iteration required 586 iterations and did not agree with
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either DI or with DSA. This difference is due to false convergence by unaccelerated

SI.

The isotropic surface source tests were used to compare with the TIEL bench-

mark. The matrix albedo was not implemented in XY nor XYZ geometry, thus a 32

mfp problem was used to emulate an infinite medium. When using diamond differ-

ence, DI was unable to generate a reasonable solution due to the negative flux effect.

The step characteristic spatial quadrature was much closer–the maximum symmetric

relative difference was 3.0 × 10−2 for optical depths in excess of 1 mfp. Given the

performance constraints of my DI code due to the way it was implemented, I did not

refine the spatial and angular mesh to refine the solution.

The two region, scattering ratio sweep was implemented in XY geometry as two

slabs with dimensions 2 mfp by 4 mfp (Figure 5.7), with vacuum boundaries on all

four sides. A Lambertian illumination was used on the left boundary. Of the hundred

combinations of scattering ratios, there were eight cases where DI and DSA did not

agree; in three of the eight cases, DI had failed to converge within 500 iterations. This

will be discussed further in Section 6.1.2.

A B A B

2 mfp

4
m

fp

Figure 5.7: Layout for the two region test.

5.1.3 XYZ Geometry. Because XYZ geometry was an extension of the XY

implementation, a limited set of test cases were required. The focus of the testing

was to ensure that Z axis currents and the spatial quadratures were implemented
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correctly. The set of test problems performed in XYZ geometry is presented in the

following list:

1. Pure Absorber-Single region (σ = 1, c = 0, qe = 4.7, 32 mfp by 32 mfp by 32

mfp) and vacuum boundaries;

2. Pure Scatterer-Single region (σ = 1, c = 1, qe = 4.7, 32 mfp by 32 mfp by 32

mfp) and vacuum boundaries;

3. 1D, Two Region, Scattering ratio test (σ = 1.0, qe = 0, 2 mfp by 4 mfp by 4

mfp), vacuum boundaries, left incident Lambertian illumination (Q = 4.7).

The spatial mesh in all cases was a 20 by 20 by 20 uniform cell spacing using the S4

angular quadrature.

While using DD with DI in XY geometry caused some problems in converging,

in XYZ geometry DI exhibited exceptionally poor performance when using diamond

difference. For problems with strong emission sources, such as the pure absorber

and pure scatterer tests, DI and PARTISN converged to the same solutions. Using a

positive method, such as step, DI is able to converge for all the test cases. My negative

flux fix-up scheme was able to fix many of the cases were DI did not converge, however,

the scheme failed when the scattering ratio was larger than 0.8.

5.2 Multigroup Verification Tests

Three multigroup test cases were implemented to verify that the conventional

multigroup method is compatible with the DI method. The first test was an ab-

sorptive downscatter-only problem utilizing three energy groups. The group cross

sections are shown in Table 5.3, where σa is the absorption cross-section, σt is the

total cross-section, and σsg→2 is the scattering cross-section from group g to group

2. The downscatter only test is the simplest multigroup problem and it is a useful

test for debugging purposes. The next test was an absorptive upscatter test. The

group cross sections are similar to those shown in Table 5.3, the only change being

that the last group has an upscatter contribution to the first group. The third test
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was a downscatter only test where the second energy group was a strong scatterer

(Table 5.4). This test was designed to have a different inward angular partial current

distribution between adjacent energy groups. The alternating pattern would test how

well DI is able to adapt to the change in the inward angular current distribution.

In slab geometry, all three test cases consisted of a 32 mfp uniform region with

vacuum boundaries and a 256 uniform spatial cell mesh. Both the S8 and DP4 angular

quadratures were used. In XY geometry a 32 mfp by 32 mfp uniform region and 20

by 20 uniform spatial cell mesh was used. The S4 angular quadrature was used for

XY geometry. For the upscatter test, the convergence test was taking the maximum

symmetric relative difference between the current and previous iteration for each

energy group. The convergence tolerance was set to 10−7.

DI and PARTISN (unaccelerated and TSA) both agreed using all combinations

of angular quadratures and supported spatial quadratures (LD and DD in slab geom-

etry and DD in XY geometry). PARTISN did not agree to within the convergence

tolerance on the “Three Group Absorber Upscatter Test” when using DSA in both

slab and XY geometries. When using DSA, the maximum value of the symmetric

relative difference for the different combinations of spatial and angular quadratures

was 7× 10−6 to 9× 10−6, just beyond the agreement requirement of 10−6.

5.3 Time Dependent Verification Tests

Three time-dependent external sources, qe, were used for testing. The first

source was a uniform isotropic source that is initially off and instantaneously turns

Table 5.3: Group cross sections use for the downscatter
test.

Energy Group σa σt σsg→1 σsg→2 σsg→3

1 0.9 1.0 0.0 0.1 0.0
2 0.9 1.0 0.0 0.0 0.1
3 1.0 1.0 0.0 0.0 0.0
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Table 5.4: Group cross sections use for the alternating
test.

Energy Group σa σt σsg→1 σsg→2 σsg→3

1 0.9 1.0 0.0 0.1 0.0
2 0.0 1.0 0.0 0.9 0.1
3 1.0 1.0 0.0 0.0 0.0

on and then stays constant in time (Step Source). The “Step Source” test is the most

rudimentary time dependent test and is useful in debugging. This test was also used

to verify that the solution was approaching the steady-state solution. The second

and third sources were a “Ramp Up and Hold” and a “On and Ramp Down.” The

combination of these three tests would test the performance of the DI method for the

common time-dependent source types. In all test case a single energy group was used

with a velocity of 10−3cm/s.

Comparing PARTISN and DI on a time step basis was not feasible because of

the adaptive time step algorithm that PARTISN uses. I decided that implementing

PARTISN’s adaptive time step algorithm was not useful nor was modifying PARTISN

to create a file containing the time steps. Instead, I had DI use a smaller time

step, 10−4 seconds, and interpolated between time steps in order to compare with

PARTISN. The basis for my decision was that PARTISN’s utility as an accurate

benchmark is limited by its inability to output the more accurate extrapolated fluxes

(see Appendix A). Furthermore, the focus of my research was to demonstrate that DI

did not have problems converging when used with very optically thick spatial cells.

The time-independent testing demonstrated that DI produces reliable results when

the spatial cell is the appropriate size for the spatial quadrature.

The synthetic cross section for the test cases performed by DI was 107 cm−1.

For PARTISN, the synthetic cross section varied between 107 cm−1 and 104 cm−1.

The constant source test was also used to test a range of time steps, ranging from 10

seconds to 10−5 seconds.
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Table 5.5 shows the maximum and mean values for the symmetric relative dif-

ference between the DI and PARTISN solutions taken at each PARTISN time step.

The interpolation was performed using Mathematica’s interpolation function, which

performs a piecewise polynomial fit of order 3. This test was performed when DI was

set to output the midpoint scalar flux and the more accurate end of time step scalar

flux. There was no significant difference when the time step was varied.

For XY geometry, a corner source problem was used. The problem was 6 cm by

6 cm with an uniform isotropic source region in the lower left corner with dimensions

1 cm by 1 cm. The source region material had a cross section of 0.1cm−1 and a

scattering ratio of 0.5. The rest of the problem was a uniform material with a cross

section of 1.0cm−1 and a scattering ratio of 0.5. A 20 by 20 spatial mesh was used

and the angular quadrature was S4.

In XY geometry, comparing the results generated by PARTISN and DI was

problematic. When using DD as the spatial quadrature a large number of negative

scalar fluxes will occur outside the source region. PARTISN forces a negative flux fix-

up for time dependent problems, thus it is not possible to compare my DI code and

PARTISN without any fix-up. Because I did not implement the same negative flux fix-

up, there is a substantial difference, a symmetric relative difference of approximately

0.1, in the results generated by DI and PARTISN.

Table 5.5: Maximum and mean symmetric relative dif-
ference between DI and PARTISN for the
time dependent tests in slab geometry.

Test Maximum Mean

Constant Source 1.0× 10−4 2.2× 10−6

On and Ramp Down 6.4× 10−4 6.3× 10−4

Ramp Up and Hold 6.0× 10−4 8.4× 10−5
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VI. Performance Analysis

The verification testing that I performed demonstrated that DI converges to the

benchmark solution in most of the test cases. An assessment of how the DI algorithm

performed in reaching the solution is necessary in order to judge if DI is a suitable

replacement for source iteration. The key performance metric in this assessment is

the number of iterations required for convergence. Because of the different perfor-

mance trade-offs made in my DI code, which is designed to support research, versus

PARTISN, which is designed to be a production code, a run time or processor time

comparison is not a reliable measure of performance.

In the case of PARTISN, the number of inner iterations is the measure of its

performance. For DI, the number of calls to the partial current solver is the measure

of its performance. In addition, an examination of when DI did not converge, or

converged to a different solution, is part of the qualitative assessment of the overall

performance of the DI method.

6.1 Time Independent Problems

All the test cases referenced in this chapter are described in Chapter V.

6.1.1 Slab Geometry. A summary of the number of iterations required

for convergence is shown in Table 6.1. In all cases DI was able to converge to the

benchmark solution in the same number or fewer iterations as PARTISN using DSA.

Furthermore, with few exceptions, the agreement between the scalar fluxes produced

by DI and PARTISN was within the convergence tolerance. The few exceptions where

the two methods did not agree are presented later in the text. The isotropic source

tests (5 and 6) was not performed with PARTISN because the source could not be

accurately represented. The ranges given for tests 8 and 9 reflect the number of

iterations from the smallest problem to the largest problem.

6.1.1.1 Tests 1 and 2. The single region pure absorber test (1) demon-

strates that there is no performance advantage between DI and source iteration for
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Table 6.1: Number of iterations required for convergence
in the time independent,slab geometry tests.

Source Iteration

Benchmark DI None DSA TSA

1. Pure Absorber 2 2 2 2
2. Pure Scatterer 7 103 10 25
3. Infinite Medium 1 27 10 N/A
4. Constant Source, Single-Region 6 20 7 7
5. Isotropic Source, 4 mfp 11 N/A N/A N/A
6. Isotropic Source, Infinite Medium 11 N/A N/A N/A
7. Lambertian Source, 4 mfp, Vacuum 8 75 15 18
8. Periodic Interface, Cross-sections 9 - 12 540 - 27891 22 - 41684 123 - 6605
9. Periodic Interface, Scattering ratio 8 - 17 33 - 98 11 - 22 12 - 29

strong absorbing problems. As the scattering ratio increases (Test 4 and becomes

a pure scattering problem (Test 2), the performance of unaccelerated source itera-

tion drops. There is no performance advantage between DI and accelerated source

iteration, either DSA or TSA, for problems that feature uniform material properties.

6.1.1.2 Test 3. This test problem is solved in one iteration by DI

because the initial inward current distribution is isotropic, which is correct distribu-

tion for this problem. If the starting inward current distribution is set randomly, DI

requires eight iterations to converge. This test suggests a useful performance enhance-

ment for DI by using an approximation for the inward current distribution. This is

particularly useful in a time-dependent code because in a slowly-varying problem the

current distribution will not change rapidly between time steps. DI performed slightly

better than DSA with this problem.

6.1.1.3 Test 4. Generally, all four spatial quadratures converged

within 6 iterations, the only exceptions being at the coarse grid spacings where LC,

SC, and DD required 5 iterations (SC required only 4 iterations at the coarsest mesh

of 8 cells). As previously noted, there was no performance advantage between DI and
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accelerated source iteration. DI performed much better than unaccelerated source

iteration.

6.1.1.4 Test 7. The Lambertian illumination problem exhibited a clear

performance advantage between DI and accelerated source iteration. DI was able to

converge in half as many iterations as DSA. Figures 6.1 through 6.4 show the number

of iterations required for convergence as the scattering varied from 0 to 1 when using

DSA, TSA, unaccelerated PARTISN and DI. Two test scenarios are used: One is a

uniform source and the other is a Lambertian illumination. For DSA, Figure 6.1,

there is a difference in the number of iterations between the two tests when c > 0.2.

For TSA, Figure 6.2, the difference in the number of iterations does not occur until

c > 0.7. Unaccelerated source iteration (Figure 6.3) is similar to TSA in behavior.

While DI (Figure 6.4) does exhibit the difference in the number of iterations, there is

no growth as c→ 1.
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Figure 6.4: Number of Iterations Needed for Conver-
gence Using DI With LD and S8.

The Lambertian illumination test is more difficult to solve than a uniform source

because of coupling of the flux between the left and right halves of the problem and

the asymmetry in the flux. When the angular flux is perturbed in the left hand side,

it causes a perturbation in the right hand side, which then couples back to the left

hand side (provided c > 0). The presence of an embedded neutron source masks the

effect of perturbation and, hence, allows the problem to converge faster.

6.1.1.5 Tests 8 and 9. For Test 8, both unaccelerated source iteration

and TSA required more iterations than DI to converge. DSA had good performance,

requiring only 22 to 27 iterations when the problem was smaller than 5 region pairs.

When the problem was 5 region pairs and larger, DSA was not providing any benefit

and was turned off by PARTISN, thus effectively becoming an unaccelerated method.

DI and PARTISN did not agree to within the convergence tolerance when PAR-

TISN required many iterations to converge. For example, TSA and DI agreed in the

one region pair case (123 iterations) and did not agree in the two region pair case
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(386 iterations). The source of the discrepancy is difficult to fully ascertain without

instrumenting PARTISN. The most likely cause is a combination of false convergence.

For Test 9, DI required fewer iterations to converge (Figure 6.5) than PAR-

TISN. As the problem got larger than 30 region pairs, PARTISN would not perform

any additional iterations. The reason for the difference between the solutions pro-

duced by DI and PARTISN is due to false convergence on the part of PARTISN. The

convergence test that PARTISN performs is

max
i,g

∣∣∣∣∣φl+1
i,g − φli,g
φli,g

∣∣∣∣∣ < ε, (6.1)

where φli,g is the scalar flux at iteration l at mesh point i, group g and ε is the

convergence tolerance. At 30 region pairs, the scalar flux at the right edge of the

problem is 2.08 × 10−24. Recalling (1.24) and the problem of small contributions

as the number of scatters gets large, PARTISN is exhibiting that behavior. With

such a small flux, the contribution from neutrons that have over 95 collisions (using

unaccelerated source iteration as the measure of scattering contributions) to the scalar

flux is smaller than the convergences tolerance.

Overall, agreement between DI and PARTISN for these two tests is acceptable

given the limitations of the source iteration method. Further research is needed to

verify the solutions generated by DI beyond the regime where PARTISN generates

acceptable results.

6.1.1.6 Test 10. Tables 6.2 through 6.5 show the number of iterations

required for convergence for test 10 (the Two Region Scattering Ratio Sweep Test). I

also ran the test using the LD spatial quadrature and observed no significant difference

in the number of iterations. The number of iterations required for convergence was

essentially the same for both the DPn and Sn angular quadratures. In all cases, DI

converged in fewer iterations, particularly as c→ 1.
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The results shown in tables 6.3 and 6.5 are symmetric relative to the pure

absorber to the pure scatter diagonal (a difference of one iteration is ignored). Table

6.2 has a slight asymmetry when the absorbing region is on the left versus the right.

When the absorbing region is on the left and the scattering region is on the right,

there are two isotropic (or nearly isotropic) flows into the left region. This forces

DI to transition from isotropic to an anisotropic flow from two different directions.

Conversely, when the absorbing region is on the right and the scattering region is on

the left, there is only one isotropic flow into the right region.

The DSA case (Table 6.4) also has an asymmetry relative to the diagonal. When

the scattering region is on the left and the absorber is on the right, the problem is

similar to the Left Lambertian Illumination test (Test 7). When the right region is

a pure absorber, the problem is equivalent to a 2 mfp Left Lambertian Illumination

test (which converges in the same number of iterations). As the scattering ratio of the

right region increases, the problem evolves into a 4 mfp Left Lambertian Illumination

test. When the absorbing region is on the left and the scattering region is on the right,

the left region is quickly solved and the right region has an anisotropic illumination

on the left.

6.1.2 XY Geometry. A summary of the number of iterations required for

convergence is shown in Table 6.6. The performance that DI exhibited when using

the diamond-difference spatial quadrature did not reveal any significant performance

advantage; in fact, in some cases DI required more iterations. For example, in the

case of the pure scatterer test, DI needed more iterations to converge than DSA when

using DD; however, with SC and LC, DI required only 9 iterations to converge.

The infinite medium test, as in the slab geometry case, was able to converge

within one iteration when using an isotopic distribution as the initial condition.

Changing DI to use a random initialization of the inward current distribution pre-

vents convergence when using DD. If SC is used instead of DD, DI is able to converge

within 17 iterations.
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Table 6.2: Number of iterations for the two region scat-
tering ratio sweep using DI, diamond differ-
ence, DP4 double-range Gauss-Legendre an-
gular quadrature.

Left Region Scattering Ratio
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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io 0.0 2 6 6 7 7 7 7 8 8 8 7
0.1 6 6 6 7 7 7 8 8 8 8 8
0.2 7 7 7 7 7 7 8 8 8 8 8
0.3 7 7 7 7 7 7 8 8 8 8 8
0.4 8 8 8 8 8 8 8 8 8 8 8
0.5 8 8 8 8 8 8 8 8 8 8 8
0.6 8 8 8 8 8 8 8 8 8 8 8
0.7 9 9 9 8 8 8 8 8 8 8 8
0.8 9 9 9 9 9 9 9 8 8 8 8
0.9 9 9 9 9 9 9 9 8 8 8 8
1.0 9 9 9 9 9 9 9 8 8 8 7

Table 6.3: Number of iterations for the two region scat-
tering ratio sweep using SI, no source acceler-
ation, diamond difference, DP4 double-range
Gauss-Legendre angular quadrature.

Left Region Scattering Ratio
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
ig

h
t

R
eg

io
n

S
ca

tt
er

in
g

R
at

io 0.0 2 8 11 13 16 19 23 28 35 46 63
0.1 8 9 11 13 16 19 23 28 36 46 64
0.2 11 11 12 14 16 20 24 29 36 47 65
0.3 13 13 14 15 17 20 24 29 36 47 66
0.4 16 16 17 17 19 21 25 30 37 48 67
0.5 19 19 20 20 21 23 27 32 39 50 70
0.6 23 23 24 24 25 27 29 34 41 52 73
0.7 28 28 29 29 30 32 34 38 45 56 78
0.8 35 35 36 37 38 39 41 45 51 63 87
0.9 45 46 47 47 49 50 53 56 63 75 103
1.0 62 63 64 66 68 70 73 78 87 103 141
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Table 6.4: Number of iterations for the two region scat-
tering ratio sweep using SI, DSA, diamond
difference, DP4 double-range Gauss-Legendre
angular quadrature.

Left Region Scattering Ratio
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
ig

h
t

R
eg

io
n

S
ca

tt
er

in
g

R
at

io 0.0 2 6 7 8 8 9 10 11 12 13 14
0.1 5 6 7 8 8 9 10 11 12 13 14
0.2 6 6 7 7 8 9 10 11 12 13 14
0.3 7 7 7 7 8 9 10 11 12 13 15
0.4 7 7 7 7 8 9 10 11 12 13 15
0.5 8 8 8 8 8 9 10 11 12 14 15
0.6 8 8 8 8 8 9 10 11 12 14 15
0.7 9 9 9 8 9 9 10 11 12 14 16
0.8 10 9 9 9 9 9 10 11 13 14 16
0.9 10 10 10 10 9 9 10 11 13 15 17
1.0 11 11 11 11 11 10 10 11 13 15 18

Table 6.5: Number of iterations for the two region scat-
tering ratio sweep using SI, TSA, diamond
difference, DP4 double-range Gauss-Legendre
angular quadrature.

Left Region Scattering Ratio
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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io 0.0 2 5 6 7 7 8 8 9 10 13 17
0.1 5 5 6 7 7 8 8 9 10 13 17
0.2 6 6 6 7 7 8 8 9 10 13 17
0.3 7 6 6 7 7 8 8 9 10 13 17
0.4 7 7 7 7 7 8 8 9 10 13 18
0.5 8 8 7 7 8 8 8 9 11 13 18
0.6 8 8 8 8 8 8 9 9 11 14 19
0.7 9 9 9 9 9 9 9 10 11 14 19
0.8 10 10 10 10 10 11 11 11 13 15 21
0.9 13 13 13 13 13 13 14 14 15 18 25
1.0 17 17 17 17 18 18 19 19 21 25 33
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In the two region scattering ratio sweep test, the performance exhibited by DI

when using the diamond-difference spatial quadrature (Table 6.7) was significantly

worse than PARTISN using DSA (Table 6.11). For some combinations of scattering

ratio, DI was unable to converge in fewer than 500 iterations (indicated by “NC” in

the table). When compared to unaccelerated source iteration (Table 6.10), DI with

diamond difference performs better in most cases.

The eight cases where DI and PARTISN (indicated in bold in Table 6.7) do

not have any apparent pattern other than they all occur when the left region has

a scattering ratio less than 0.7 and in five of the eight cases the left region had a

scattering ratio less than 0.5. When there are no embedded sources in a cell and the

scattering ratio is low, negative fluxes are more likely to occur. The negative fluxes

will result in a variety of unphysical artifacts, e.g. strong axial flows and oscillations

in the angular distribution, which is the most likely cause for the differences in the

two solutions. Interestingly enough, only three of the four cases where DI did not

converge within 500 iterations are in this set of eight; one of the non-convergent cases

was able to produce the same solution as PARTISN. In all eight cases, the area of the

problem where the two solutions failed to agree was always along the far right edge.

The angular flux in the right half of the problem is much smaller than the angular

flux in the left half because the only source of neutrons is from the illumination on

the left boundary, thus negative fluxes are more likely to occur.

When the negative flux fix-up scheme was used, the irregular pattern of iteration

counts vanished (Table 6.8). There was an increase in iteration count when c > 0.8

relative to PARTISN. A direct comparison of the scalar fluxes generated by DI and

PARTISN is not possible because the difference in fix-up schemes will cause them to

converge to different solutions. Instead, I compared the DI and PARTISN results to

the results produced by DI using the step characteristic spatial quadrature. Because

step characteristic is non-negative and has second-order convergence, this comparison

would highlight the effect of the fix-up on the solution. The magnitude of the variation

in the two diamond difference solutions relative to the step characteristic solution was
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approximately the same. Thus, the solution produced by my fix-up scheme was no

worse than the solution produced by PARTISN with its fix-up scheme.

When using a positive spatial quadrature such as step characteristic, the per-

formance of DI improves dramatically (Table 6.9). This behavior further highlights

the problem of using a non-positive spatial quadrature with distribution iteration.

6.1.3 XYZ Geometry. The two region sweep problem (Test 10) proved to

be very challenging for DI. For virtually all of the combinations of scattering ratios,

DI was unable to converge within 50 iterations when using diamond-difference, even

after the convergence tolerance was changed to 1.0×10−5. The flux fix-up scheme was

able to correct most of the non-convergent cases, however, when c > 0.7 the fix-up

scheme lost effectiveness in reducing the iteration count.

Table 6.12 summarizes the number of iterations required for convergence. The

tests where DI was unable to converge using DD are noted with “NC.” When a

positive spatial quadrature was used, DI was able to converge.

6.2 Multigroup Verification Tests

Table 6.13 summarizes the number of iterations that each method required to

reach the convergence tolerance in slab geometry. DI performed as well, or better,

than either unaccelerated source iteration or TSA. DSA converged more rapidly in

the “Three Group Absorber, Upscatter” test; however, DSA did not converge to the

same solution as DI, unaccelerated source iteration and TSA. The PARTISN log file

did not give any indication that it encountered any problems and had to disable DSA.

Without performing a detailed analysis of the PARTISN code, it is not clear why DSA

did not converge to the same solution.

The results for XY geometry was similar to slab geometry, including the differ-

ence in the “Three Group Absorber, Upscatter” test. For the downscatter tests the

number of iterations was the same as in the slab geometry case. In XY geometry, my

DI code initializes the angular inward current distribution for every outer iteration,
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Table 6.6: Number of iterations required for convergence
in the time independent, XY geometry tests.

DI Source Iteration with DD

Test Problem DD SC Unaccelerated DSA

Pure Absorber 2 2 2 2
Pure Scatterer 16 4 586 11
Infinite Medium 1 1 139 106
Constant Source, Single-Region 6 5 18 7
Isotropic Source, 4mfp 31 23 N/A N/A
Isotropic Source, 32mfp NC 65 N/A N/A
Lambertian Source, 4mfp, Vacuum 18 8 22 9

Table 6.7: Number of iterations for the two region scat-
tering ratio sweep using DI, diamond differ-
ence, S4 single-range Gauss-Legendre angular
quadrature in XY geometry.

Left Region Scattering Ratio
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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io 0.0 2 5 6 8 7 8 9 10 12 11 15
0.1 8 51 14 9 7 9 10 10 12 11 15
0.2 8 8 9 13 8 14 NC 10 11 11 13
0.3 12 13 8 8 78 11 12 13 12 13 14
0.4 13 10 12 25 15 NC 11 10 11 13 16
0.5 11 149 15 22 11 18 10 15 13 13 16
0.6 16 13 25 19 10 12 20 11 13 14 15
0.7 56 15 17 12 14 12 18 11 24 14 16
0.8 17 15 14 17 14 12 14 36 14 15 18
0.9 20 14 18 16 22 NC 14 NC 14 17 18
1.0 19 15 23 27 24 17 15 17 17 20 21
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Table 6.8: Number of iterations for the two region scat-
tering ratio sweep using DI, diamond differ-
ence, S4 single-range Gauss-Legendre angular
quadrature in XY geometry and a negative
flux fix-up.

Left Region Scattering Ratio
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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io 0.0 2 5 7 6 7 7 9 10 11 11 13
0.1 5 5 6 7 8 8 9 9 11 11 13
0.2 6 6 6 7 7 8 8 10 10 11 13
0.3 6 7 7 7 8 8 9 11 11 11 14
0.4 8 7 8 8 8 9 10 10 11 12 14
0.5 8 7 8 8 9 9 10 10 12 12 14
0.6 9 9 9 9 9 9 13 11 12 13 14
0.7 10 9 10 10 12 11 11 11 12 14 16
0.8 10 11 11 11 11 12 13 13 13 15 16
0.9 12 11 12 13 13 13 13 15 15 15 16
1.0 13 13 14 14 15 16 16 19 16 19 21

Table 6.9: Number of iterations for the two region scat-
tering ratio sweep using DI, step character-
istic, S4 single-range Gauss-Legendre angular
quadrature in XY geometry.

Left Region Scattering Ratio
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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io 0.0 2 4 5 5 6 6 7 7 8 8 9
0.1 5 5 5 6 6 6 7 7 8 9 9
0.2 5 5 6 6 6 7 7 8 8 9 9
0.3 6 6 6 6 6 7 7 8 8 9 10
0.4 6 6 6 7 7 7 8 8 8 9 10
0.5 7 7 7 7 7 8 8 8 9 9 10
0.6 7 7 7 8 8 8 8 8 9 10 10
0.7 8 8 8 8 8 8 9 9 10 10 10
0.8 9 9 9 9 9 9 9 10 10 10 11
0.9 9 9 10 10 10 10 10 10 10 11 12
1.0 10 10 10 10 11 11 11 11 12 12 13
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Table 6.10: Number of iterations for the two region scat-
tering ratio sweep using SI, no acceleration,
diamond difference, S4 single-range Gauss-
Legendre angular quadrature in XY geome-
try.

Left Region Scattering Ratio
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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io 0.0 2 9 11 15 16 19 22 26 32 39 51
0.1 9 10 12 14 16 19 22 26 32 39 51
0.2 12 12 13 14 16 19 22 27 32 40 51
0.3 14 14 14 15 17 20 23 27 33 40 52
0.4 16 16 16 17 18 20 23 28 33 41 53
0.5 19 19 19 20 20 22 25 29 34 42 54
0.6 22 22 22 23 24 25 27 30 35 43 56
0.7 26 26 27 27 28 29 30 33 38 46 58
0.8 32 32 32 33 33 34 36 38 42 49 62
0.9 39 40 40 40 41 42 43 46 49 56 69
1.0 51 51 52 52 53 54 56 58 62 69 83

Table 6.11: Number of iterations for the two region scat-
tering ratio sweep using SI, DSA, diamond
difference, S4 single-range Gauss-Legendre
angular quadrature in XY geometry.

Left Region Scattering Ratio
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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io 0.0 2 6 8 9 9 10 10 11 11 12 13
0.1 6 7 8 8 9 9 10 11 12 12 13
0.2 7 7 7 8 9 9 10 11 12 12 13
0.3 8 8 8 8 9 9 10 11 12 12 13
0.4 8 8 8 8 9 9 10 11 12 13 13
0.5 9 8 8 9 9 9 10 11 12 13 14
0.6 9 9 9 9 9 9 10 11 12 13 14
0.7 10 10 9 9 9 9 10 11 12 13 14
0.8 10 10 10 10 10 10 10 11 12 13 14
0.9 11 11 11 11 11 11 10 11 12 13 14
1.0 12 12 12 12 12 12 11 11 12 13 14
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Table 6.12: Number of iterations required for conver-
gence in the time independent, XYZ geom-
etry tests.

DI Source Iteration

Test Problem DD Step Unaccelerated DSA

Pure Absorber 2 2 2 2
Pure Scatterer 37 8 410 11
Infinite Medium NC 14 421 388
Constant Source, Single-Region 11 8 17 8

thus the total number of iterations in the “Three Group Absorber, Upscatter” test

was greater than what PARTISN required (30 for DI and 18 for unaccelerated source

iteration).

The multigroup problems were tested using three different initialization strate-

gies for the inward angular current distribution for each energy group: Isotropic at

every outer iteration (Isotropic); isotropic for the first outer iteration and the previous

distribution for subsequent outer iterations (Previous); and a random initialization

for every outer iteration (Random). As shown in Table 6.14, for downscatter prob-

lems there is no advantage between Isotropic and the Previous initialization methods.

For problems that have upscatter, the Previous method performs better than the

Isotropic method. The Random initialization method demonstrates that convergence

is not predicated on the initial distribution when solving multigroup problems.

Table 6.13: Total number of inner iterations required for
convergence in the time independent, multi-
group, slab geometry tests.

Source Iteration

Test Problem DI Unaccelerated DSA TSA

Three Group Absorber, Downscatter 6 6 6 6
Three Group Alternating 11 135 13 34
Three Group Absorber, Upscatter 21 21 9 21
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Table 6.14: Total number of inner iterations required for
convergence in the time independent, multi-
group, slab geometry inward angular partial
current initialization method tests.

Test Problem Isotropic Previous Random

Three Group Absorber, Downscatter 6 6 6
Three Group Alternating 11 11 13
Three Group Absorber, Upscatter 24 21 24

6.3 Time Dependent Verification Tests

The agreement between PARTISN and DI was sufficient to demonstrate that

DI can be used as the transport code in a time dependent problem. The difference

that was observed in the two source ramp tests was due to the differences in the

time steps and where the time-varying source was sampled. The number of iterations

required for each time step was consistent with the results seen in the time independent

testing, e.g. only two iterations are needed when the synthetic scattering ratio was

small. For the pure scatter case, when v∆t was increased, thereby allowing c̃ → c,

the number of iterations increased. Also, when the synthetic cross section was large,

the number of iterations was generally insensitive to changes in the actual total cross

section because the synthetic scattering ratio was relatively unaffected. Both DI and

PARTISN exhibited these behaviors, which supports the conclusion that DI performs

in an equivalent fashion as PARTISN.
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VII. Conclusion

The Distribution Iteration method has consistently been demonstrated as a

reliable replacement for source iteration. Prior to my research, there had been no

formal verification plan for distribution iteration. The previous work by Wager and

Prins only implemented tests designed to aid in the development of the algorithm.

The verification plan that was implemented did not reveal any unexpected difference

between the results produced by DI and accelerated source iteration.

7.1 Contributions

In my research, I did demonstrate that DI can be used to solve the time depen-

dent transport equation using the same method used by production source iteration

codes. As demonstrated in this dissertation, there is no optimal combination of pa-

rameters, e.g. time step and cell size, for producing reliable results. The choice of a

time step becomes more complicated with multigroup problems. While it is possible to

pick a time step and still obtain a reasonable cell optical thickness for monoenergetic

problems, a multigroup problem requires a transport algorithm that tolerates opti-

cally thick cells for some energy groups. My research demonstrated that DI was able

to produce reasonable results for optically thick time dependent problems without a

fix-up mechanism.

One of the design goals for the software that I developed as part of my re-

search was to be able to support new research. I implemented a flexible and modular

code, which also incorporated real time visualization. Given the uniqueness of the DI

algorithm, I had to develop the visualization methods.

In order to be able to use the TIEL benchmark developed by Ganapol, Mathews

and I developed the matrix albedo for time independent problems. This new method

provides an accurate solution for the effect that an infinite medium will have on the

angular flux in a region of interest. While some aspects of the implementation were

straightforward, I implemented all boundary conditions, e.g. specular reflection, in
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matrix form. This new approach provides a flexible method for handling difficult

boundary conditions, such as asymmetric angular quadratures.

Several improvements to the DI algorithm are original to my research. The

first improvement was the methodical implementation of the three geometries. This

implementation is more compact and maintainable than previous versions and was

instrumental in keeping verification plan simple. The improvement to the angular

current distribution refinement algorithm converges more rapidly than the previous

algorithm. The new algorithm is also more parallel efficient than the previous version.

Finally, the partial current solver can easily be adapted to different linear algebra

solvers and has improved parallel efficiency.

7.2 Conclusions

Wager and Prins performed initial assessments of the relative performance be-

tween DI and SI. My research examined a broader range of the parameter space using

both DSA and TSA. Based on my research, DI consistently performed as well or

better than either DSA or TSA in slab geometry. In XY and XYZ geometries, DI

continues to exhibit superior performance when using positive spatial quadratures.

The performance of DI relative to DSA and TSA supports the conclusion that DI is

a powerful replacement for source iteration. For the classes of problems where DSA

loses effectiveness and TSA fails, DI exhibits robust performance and converges in

fewer iterations.

In XYZ geometry, DI does demonstrate a pronounced weakness when using a

spatial quadrature that generates negative fluxes. The poor performance exhibited

with diamond difference is strong evidence that DI should be used with a positive spa-

tial quadrature such as SC or with a spatial quadrature that is negative less frequently

than DD, e.g. LC or LD. I did implement a new negative angular partial current dis-

tribution fix-up, which is different then the fix-up that PARTISN performs, however,

it was ineffective in highly scattering problems (c > 0.7).
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For time dependent transport, PARTISN implements an adaptive time step

algorithm and a negative flux fixup. In addition, PARTISN enables the negative flux

fixup algorithm in the transport equation. Reverse engineering these three algorithms

was impractical and of little value. The comparisons were adequate to confirm that

my time-dependent DI code has no errors worse than PARTISN’s.

The poor performance that DI exhibited when using DD is not a failure of the

DI algorithm. Mathews [26] demonstrated the unphysical ray effect that DD exhibits,

which calls into question the reliability of the results generated by DD when negative

fluxes occur, independent of the algorithm. A key advantage that DI has is that

new spatial quadratures can be implemented easily while implementing a new spatial

quadrature in DSA is not trivial.

Currently, there is no acceleration implemented in the DI algorithm. In slab

and XY geometry there was little motivation to add any acceleration when using DI

because it outperforms DSA and TSA. In XYZ geometry my research shows that

acceleration will have little benefit when using a positive spatial quadrature. There

may be some classes of problems where DI may benefit from a convergence accelerator.
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Appendix A. Other Transport Codes

A.1 TIMEX

The within-group BTE used by the 1972 TIMEX code [30] is originally presented

as (N.B. some subscripts have been eliminated for clarity)

1

v

(
ψj+1
i − ψji

∆t

)
+ µm

(
Ai+1/2ψ

j+1
i+1/2 − Ai−1/2ψ

j+1
i−1/2

Vi

)

+

(
αm+1/2ψ

j+1
m+1/2 − αm−1/2ψ

j+1
m−1/2

wmVi

)
+ σiψ

j+1
i = Sjm,i + qm,i. (A.1)

TIMEX 1972 uses a cell-centered indexing scheme, where j is the time index, i is the

cell index and m is the ordinate index. Cell faces, therefore, are indicated by a half

step, e.g. i + 1/2 is the cell face between cells i and i + 1. The area of a cell face is

represented by A and the cell volume by V . The ordinates and weights are represented

by µ and w, respectively. The variable α represents the curvature coefficient. The

angular flux is represented by ψ, S is the scattering and fission sources from the j

time interval, and q is the inhomogeneous source. Finally, v is the group velocity and

∆t is the time step.

The combination of A, V and α allows the TIMEX 1972 code to solve three

different one-dimensional geometries–slab, cylindrical, and spherical. The curvature

coefficient is defined recursively as

αm+1/2 − αm−1/2 = µmwm
(
Ai+1/2 − Ai−1/2

)
, (A.2)

using α1/2 = αN+1/2 = 0, where N is the number of ordinates, as starting conditions

(N.B. the ordinate index, m starts at 1). The definitions for A and V are shown in

table A.1. Note that a recursive definition is used for the area elements in spherical

geometry. This was done to improve accuracy for cells near the center of the sphere.

Also, in cylindrical geometry the ordinates represented by µm and wm is actually a

two-dimensional angular quadrature of µ and ξ.
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Table A.1: Definition of geometric functions used by
TIMEX 1972.

Geometry Variable Cell Face Area (A) Cell Volume (V )

Slab xi+1/2 1 xi+1/2 − xi−1/2

Cylindrical ri+1/2 2πri+1/2 π
(
r2
i+1/2 − r2

i−1/2

)
Spherical ri+1/2

2Vi

ri+1/2−ri−1/2
− Ai−1/2

4π
3

(
r3
i+1/2 − r3

i−1/2

)
TIMEX (1972) uses a cell average relationship between the cell-centered flux

and the edges in both space and angle

ψj+1
i,m =

ψj+1
i+1/2 + ψj+1

i−1/2

2
(A.3)

ψj+1
i,m =

ψj+1
m+1/2 + ψj+1

m−1/2

2
. (A.4)

These relationships are used eliminate the i+ 1/2 and m+ 1/2 for µm > 0 directions

and i− 1/2 and m− 1/2 for µm < 0 directions and obtain

(
Vi
v∆t

+ 2µmAi+1/2 +
2αm+1/2

wm
+ σiVi

)
ψj+1
i = µm

(
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+
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)
ψj+1
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Vi
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)
ψji + Sjm,iVi + qm,iVi. (A.5)

The recursion relationship for the curvature coefficient is used to obtain

(
Vi
v∆t

+ µm
(
Ai+1/2 + Ai−1/2

)
+
αm+1/2 + αm−1/2

wm
+ σiVi

)
ψj+1
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(
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)
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)
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+
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Vi
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)
ψji + Sjm,iVi + qm,iVi. (A.6)
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Because my research is focused on Cartesian geometry, the BTE simplifies to (substi-

tuting ∆xi = xi+1/2 − xi−1/2 and dividing by ∆xi)(
1

v∆t
+ 2

µm
∆xi

+ σi

)
ψj+1
i = 2

µm
∆xi

ψj+1
i−1/2 +

1

v∆t
ψji + Sjm,i + qm,i. (A.7)

Substituting the relationship for the midpoint spatial average and algebraically rear-

ranging the terms yields

(
1

v∆t
+ σi

)
ψj+1
i + µm

ψj+1
i+1/2 − ψj+1

i−1/2

∆xi
=

1

v∆t
ψji + Sjm,i + qm,i. (A.8)

The use of the diamond-difference spatial discretization can result in a negative

outgoing angular flux. Using the midpoint spatial average to express ψj+1
i in terms

of ψj+1
i+1/2 and ψj+1

i−1/2 yields

(
1

v∆t
+ σi

)
ψj+1
i+1/2 + ψj+1

i−1/2

2
+ µm

ψj+1
i+1/2 − ψj+1

i−1/2

∆xi
=

1

v∆t
ψji + Sjm,i + qm,i. (A.9)

Solving for ψj+1
i+1/2 in terms of ψj+1

i−1/2 yields the equation

ψj+1
i+1/2 =

1− ∆x
2µ

(
σi +

1
v∆t

)
1 + ∆x

2µ

(
σi +

1
v∆t

)ψj+1
i−1/2 +

1
v∆t

ψji + Sjm,i + qm,i

1 + ∆x
2µ

(
σi +

1
v∆t

) . (A.10)

The ψj+1
i−1/2 coefficient will be negative when

σi∆x+
∆x

v∆t
> 2|µ|. (A.11)

When σi + 1
v∆t

>> 1, the source term will be negligible and either σi∆x or ∆x
v∆t

(or

both) will be large. Consider the case where ∆t→ 0,

ψj+1
i+1/2 =

2µ

∆x
ψji − ψj+1

i−1/2. (A.12)
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Thus, ψj+1
i+1/2 has the potential for being negative if the cell centered flux is small,

particularly when µ is small.

Removing the discretization of the spatial derivative from equation A.8 yields

(
1

v∆t
+ σi + µm

∂

∂x

)
ψj+1
i =

1

v∆t
ψji + Sjm,i + qm,i. (A.13)

Similarly, the discretization of the time derivative can be removed, which yields

(
1

v

∂

∂t
+ σi + µm

∂

∂x

)
ψj+1
i = Sjm,i + qm,i. (A.14)

In operator notation, this is equivalent to

V−1 ∂

∂t
Ψj+1 + LΨj+1 = SΨj + q, (A.15)

where

L = µm
∂

∂x
+ σi. (A.16)

A.2 PARTISN

PARTISN is based on the implicit in time form of the BTE. Starting from the

equation (Alcouffe [4]) (
1

v

∂

∂t
+ Ω̂ · ∇+ σ

)
ψ = S (A.17)

and using a central difference for the time derivative yields

1

v∆t

(
ψj+1/2 − ψj−1/2

)
+ Ω̂ · ∇ψj + σψj = Sj. (A.18)

The above equation, which is equivalent to the explicit midpoint method, has second

order local truncation error in time, i.e. O((∆t)2). The equation can be returned to

an implicit form by eliminating ψj+1/2. Consider the midpoint time average

ψj =
ψj+1/2 + ψj−1/2

2
. (A.19)
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The midpoint time average can be rewritten to solve ψj+1/2 as

ψj+1/2 = 2ψj − ψj−1/2. (A.20)

We can eliminate ψj+1/2 by using the midpoint time average obtaining,

2

v∆t

(
ψj − ψj−1/2

)
+ Ω̂ · ∇ψj + σψj = Sj. (A.21)

The above equation is now a backwards difference and has first-order local truncation

error. Regrouping the terms in a similar fashion to the TIMEX 1976 approach yields

Ω̂ · ∇ψj +

(
σ +

2

v∆t

)
ψj = Sj +

2

v∆t
ψj−1/2. (A.22)

The flux at the j+1/2 time step is recovered by using equation (A.20) combined with

the result for ψj obtained from equation (A.22).

The time stepping algorithm implemented by PARTISN is shown in figure A.1.

Because PARTISN was adapted from the DANTSYS transport code, using half time

steps for the extrapolated flux was notationally convenient. The half time steps are

computed by the midpoint extrapolation and the integer intervals are computed by

the transport algorithm. The notation is, however, awkward and can be expressed

instead as

Ω̂ · ∇ψj +

(
σ +

1

v∆t′

)
ψj = Sj +

1

v∆t′
ψj−1, (A.23)

where ∆t′ = ∆t/2. The extrapolation step then becomes

ψj+1 = 2ψj − ψj−1. (A.24)

It is important to note that the truncation error associated with the ψj angular flux is

first order because it is backward Euler–there is no apparent benefit in the truncation

error to using this approach. The improvement in the truncation error is in the
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extrapolation step. Doing a Taylor series expansion on ψj+1 and ψj−1 yields

ψj+1 = ψj + ∆t′
∂ψ

∂t

∣∣∣
j
+

(∆t′)2

2

∂2ψ

∂t2

∣∣∣
j
+O((∆t′)3) (A.25)

ψj−1 = ψj −∆t′
∂ψ

∂t

∣∣∣
j
+

(∆t′)2

2

∂2ψ

∂t2

∣∣∣
j
−O((∆t′)3). (A.26)

Substituting in the Taylor series expansion for ψj−1 into the extrapolation step yields

ψj+1 = ψj + ∆t′
∂ψ

∂t

∣∣∣
j
− (∆t′)2

2

∂2ψ

∂t2

∣∣∣
j
+O((∆t′)3). (A.27)

Note that the extrapolation step results in a ψj+1 that is accurate to (∆t′)2 term.

Thus, this method will yield second-order local truncation error only with the extrap-

olated fluxes and not with the midpoint fluxes.

PARTISN, however, will only output fluxes (scalar or angular) from the mid-

point time and not the extrapolated end of time step flux. Thus, the results from

PARTISN are only accurate to first order even though the algorithm is accurate to

second order internally. PARTISN solves (A.22), which is effectively Backwards Euler,

in the transport solver and then, in a separate state, applies the extrapolation step.

One advantage to this approach is that the global error will scale by (∆t)2 rather

than by ∆t if backward Euler was used.

Initialize ψ1/2 to the starting angular flux
for j = 1 to Number of Time Steps do

Compute ψj from the transport equation
Use the midpoint average to extrapolate to ψj+1/2

Increment the time index
The extrapolated flux becomes the new ψj−1/2 angular flux

end for
Algorithm A.1: Semi-Implicit Time Stepping Algo-

rithm

In order to conduct the testing to support my research, two changes to the

PARTISN code were made. The first change was to have PARTISN preserve the

scalar flux (RTFLUX) for each time step. By default, PARTISN discards the scalar
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flux from each time step and there is no parameter file option to change that behavior.

The second change was to correct an erroneous time stamp in the time dependent

scalar flux. PARTISN was writing the end of time step rather than the midpoint

time, which was the scalar flux that was being written to the file.
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Appendix B. Transport Coefficients

Wager [32] and Prins [28] derived the transport coefficients in slab and XY

geometries for various spatial quadratures. In the following sections, I will present

the derivation of the Step method spatial quadrature in XY and XYZ geometries and

Diamond-Difference in XYZ geometry.

The derivations are shown using the time independent form of the BTE. If

time dependent coefficients are needed for the synthetic time form of the BTE, both

the cross section term, σ and the average source term, SA, are replaced with the

corresponding synthetic form.

B.1 Step Method

The Step method is defined by the assumption that the angular flux is constant

within a cell (supressing the cell index number for clarity), specifically

ψR = ψA µ > 0 (B.1)

ψL = ψA µ < 0 (B.2)

and

ψT = ψA η > 0 (B.3)

ψB = ψA η < 0, (B.4)

where µ and η are the direction cosines from the angular quadrature. This spatial

quadrature is very inaccurate, but it does have the benefit of being positive and useful

when debugging. The derivation begins with the zeroth-moment balance equation

µ
ψR − ψL

∆x
+ η

ψT − ψB
∆y

+ σψA = SA. (B.5)
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Applying the constant flux assumption to eliminate ψR and ψT and grouping like

terms yields (
µ

∆x
+

η

∆y
+ σ

)
ψA = SA +

µ

∆x
ψL +

η

∆y
ψB. (B.6)

Let

εx =
σ∆x

µ
, (B.7)

εy =
σ∆y

η
and (B.8)

α =
εy
εx
. (B.9)

Note that α is effective aspect ratio for the cell for that ordinate. Multiplying Equa-

tion B.6 by ∆y/η yields

(εy + α+ 1)ψA = SA
∆y

η
+ αψL + ψB. (B.10)

Solving for ψA yields

ψA =
SA

∆y
η

+ αψL + ψB

εy + α+ 1
. (B.11)

The transport coefficients for the contributions to the cell average angular flux are

KψI
x =

α

εy + α+ 1
, (B.12)

KψI
y =

1

εy + α+ 1
, (B.13)

KψS =

∆y
η

εy + α+ 1
and (B.14)

KψE =

∆y
η

εy + α+ 1
. (B.15)
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The coefficients for the contributions to the X faces (left and right faces) are

KOI
xx =

α

εy + α+ 1
, (B.16)

KOI
xy =

1

εy + α+ 1
, (B.17)

KOE
x =

∆y
η

εy + α+ 1
and (B.18)

KOE
x =

∆y
η

εy + α+ 1
. (B.19)

The coefficients for the contributions to the Y faces (bottom and top faces) are

KOI
yx =

α

εy + α+ 1
, (B.20)

KOI
yy =

1

εy + α+ 1
, (B.21)

KOS
y =

∆y
η

εy + α+ 1
and (B.22)

KOE
y =

∆y
η

εy + α+ 1
. (B.23)

The derivation for the X-Y-Z geometry is similar, with the solution for the cell

average angular flux as

ψA =
SA

∆y
η

+ αψL + ψB + βψP

εy + α+ β + 1
, (B.24)
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where β = εy/εz and εz = σ∆z/ξ. The transport coefficients for the contributions to

the cell average angular flux are

KψI
x =

α

εy + α+ β + 1
, (B.25)

KψI
y =

1

εy + α+ β + 1
, (B.26)

KψI
z =

β

εy + α+ β + 1
, (B.27)

KψS =

∆y
η

εy + α+ β + 1
and (B.28)

KψE =

∆y
η

εy + α+ β + 1
. (B.29)

The coefficients for the contributions to the X faces (left and right faces) are

KOI
xx =

α

εy + α+ β + 1
, (B.30)

KOI
xy =

1

εy + α+ β + 1
, (B.31)

KOI
xz =

β

εy + α+ β + 1
, (B.32)

KOS
x =

∆y
η

εy + α+ β + 1
and (B.33)

KOE
x =

∆y
η

εy + α+ β + 1
. (B.34)
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The coefficients for the contributions to the Y faces (bottom and top faces) are

KOI
yx =

α

εy + α+ β + 1
, (B.35)

KOI
yy =

1

εy + α+ β + 1
, (B.36)

KOI
yz =

β

εy + α+ β + 1
, (B.37)

KOS
y =

∆y
η

εy + α+ β + 1
and (B.38)

KOE
y =

∆y
η

εy + α+ β + 1
. (B.39)

The coefficients for the contributions to the Z faces (back and front faces) are

KOI
zx =

α

εy + α+ β + 1
, (B.40)

KOI
zy =

1

εy + α+ β + 1
, (B.41)

KOI
zz =

β

εy + α+ β + 1
, (B.42)

KOS
z =

∆y
η

εy + α+ β + 1
and (B.43)

KOE
z =

∆y
η

εy + α+ β + 1
. (B.44)

B.2 Diamond Difference

The Diamond Difference spatial quadrature applies the assumption that the

angular fluxes are related to the cell average angular flux by

ψL + ψR = ψB + ψT = ψF + ψP = 2ψA (B.45)

as an auxiliary equation to the cell balance equation

µ
ψR − ψL

∆x
+ η

ψT − ψB
∆y

+ ξ
ψF − ψP

∆z
+ σψA = SA. (B.46)
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Using Equation B.45 to solve for ψR, ψT , and ψF in terms of ψL, ψB, ψP and ψA

yields

ψR = 2ψA − ψL, (B.47)

ψT = 2ψA − ψB and (B.48)

ψF = 2ψA − ψP . (B.49)

Using the above equations to eliminate ψR, ψT and ψF and grouping like terms yields

(
σ + 2

µ

∆x
+ 2

η

∆y
+ 2

ξ

∆z

)
ψA = SA + 2

µ

∆x
ψL + 2

η

∆y
ψB + 2

ξ

∆z
ψP . (B.50)

Let

εx =
σ∆x

µ
, (B.51)

εy =
σ∆y

η
(B.52)

εz =
σ∆z

ξ
(B.53)

α =
εy
εx

and (B.54)

β =
εy
εz
. (B.55)

The ratios α and β was chosen to be consistent with the X-Y diamond difference

equation derived by Mathews [26]. Multipling Equation B.50 by ∆y/η yields

(εy + 2α+ 2 + 2β)ψA = SA
∆y

η
+ 2αψL + 2ψB + 2βψP . (B.56)

Solving for the cell average scalar flux provides

ψA =
SA

∆y
η

+ 2αψL + 2ψB + 2βψP

εy + 2α+ 2 + 2β
. (B.57)
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Solving for ψR, ψT and ψF yields

ψR =
2SA

∆y
η

+ (2α− εy − 2− 2β)ψL + 4ψB + 4βψP

εy + 2α+ 2 + 2β
(B.58)

ψT =
2SA

∆y
η

+ 4αψL + (2− εy − 2α− 2β)ψB + 4βψP

εy + 2α+ 2 + 2β
(B.59)

ψF =
2SA

∆y
η

+ 4αψL + 4ψB + (2β − εy − 2α− 2)ψP

εy + 2α+ 2 + 2β
(B.60)

Using the above solutions, the transport coefficients for the contributions to the cell

average angular flux are

KψI
x =

2α

εy + 2α+ 2β + 2
(B.61)

KψI
y =

2

εy + 2α+ 2β + 2
(B.62)

KψI
z =

2β

εy + 2α+ 2β + 2
(B.63)

KψS =

∆y
η

εy + 2α+ 2β + 2
and (B.64)

KψE =

∆y
η

εy + 2α+ 2β + 2
(B.65)

(B.66)
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The coefficients for the contributions to the X faces (left and right faces) are

KOI
xx =

2α− εy − 2− 2β

εy + 2α+ 2β + 2
(B.67)

KOI
xy =

4

εy + 2α+ 2β + 2
(B.68)

KOI
xz =

4β

εy + 2α+ 2β + 2
(B.69)

KOS
x =

2∆y
η

εy + 2α+ 2β + 2
and (B.70)

KOE
x =

2∆y
η

εy + 2α+ 2β + 2
(B.71)

(B.72)

The coefficients for the contributions to the Y faces (bottom and top faces) are

KOI
yx =

4α

εy + 2α+ 2β + 2
(B.73)

KOI
yy =

2− εy − 2α− 2β

εy + 2α+ 2β + 2
(B.74)

KOI
yz =

4β

εy + 2α+ 2β + 2
(B.75)

KOS
y =

2∆y
η

εy + 2α+ 2β + 2
and (B.76)

KOE
y =

2∆y
η

εy + 2α+ 2β + 2
(B.77)

(B.78)
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The coefficients for the contributions to the Z faces (back and front faces) are

KOI
zx =

4α

εy + 2α+ 2β + 2
(B.79)

KOI
zy =

4

εy + 2α+ 2β + 2
(B.80)

KOI
zz =

2β − εy − 2α− 2

εy + 2α+ 2β + 2
(B.81)

KOS
z =

2∆y
η

εy + 2α+ 2β + 2
and (B.82)

KOE
z =

2∆y
η

εy + 2α+ 2β + 2
(B.83)

(B.84)
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Appendix C. Boundary Currents

Currents that are incident on the boundary of the region of interest can be

classified by the treatment of the source term. Consider the following simplified,

linearized BTE for a pure absorber (c = 0) medium,

µ
∂ψ

∂x
+ σψ = Q(x, µ). (C.1)

For illustrative purposes, we can further simplify this example by assuming that the

incident current is from a source on the left boundary and there is no source of

neutrons internal to the problem, thus all the neutrons are moving in the µ > 0

direction. A current source on the left can be expressed as

Q(x, µ) =

Q(µ) when x = 0

0 otherwise.

(C.2)

We can group the current sources into two categories based on whether or not there

is any µ dependence in the source.

A Lambertian or diffuse source [6] is one that has the same angular flux when

viewed from any angle, e.g. the detectors at A and B as shown in Figure C.1 both

observe the same angular flux from the differential surface element dA. Thus, a Lam-

bertian source has a uniform flux per steradian–Q(µ) = constant. Solving equation

C.1) for positive µ yields

ψ(x, µ) = Qe−xσ/µ. (C.3)

Integrating over all µ yields the scalar flux, φ,

φ(x) =
Q

2

(
e−xσ − xσΓ(0, xσ)

)
, (C.4)

where Γ(a, z) is the upper incomplete Gamma function [1] defined as

Γ(a, z) =

∫ ∞

x

ta−1e−tdt . (C.5)
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dΩ

dΩ

dA

A

B

Figure C.1: Lambertian Source

As the left boundary is approached, φ(x) → Q/2 . In terms of current, j, along

an ordinate a Lambertian source will have the familiar cosine dependence: j = µQ.

Integrating over µ > 0, the rightward (positive) partial current on the left face is Q/4

(using the normalization scheme introduced by Lewis and Miller [22]).

There is one specific type of source of the second type that is useful in bench-

marking transport codes–those that produce a uniform current source, viz. j =

constant. This source is characterized by the uniform current flowing from the sur-

face, hence the appellation isotropic surface source (ISS). The angular flux for this

type of source is

ψ(x, µ) =
Q

µ
e−xσ/µ (C.6)

with the scalar flux (for positive x) being

φ(x) =
Q

2
Γ(0, xσ). (C.7)

As the left boundary is approached, φ(x) →∞. The rightward partial current on the

left face is Q/2.
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The key differences to note between the Lambertian and the isotropic surface

sources are the partial currents (Q/4 versus Q/2, respectively) and the finite versus

infinite scalar flux at the current surface, as shown in Figure C.2. Based on these two

distinctions, one can quickly verify how a particular method has treated an incident

source. For example, PARTISN utilizes a Lambertian current source.
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 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

φ

xσ

Lambertian
ISS

TIEL Code

Figure C.2: Lambertian Illumination and Isotropic Sur-
face Source Scalar Fluxes

In the case of Ganapol’s TIEL benchmark, the angular flux in the pure absorber

case is

ψ(x, µ) =
e−xσ/µH(xσ)

2µ
, (C.8)

where H(z) is the Heaviside step function. Integration over µ yields the scalar flux

φ(x) =
1

2
Γ(0, xσ)H(xσ). (C.9)

We can conclude that the TIEL benchmark will behave identically to the isotropic

surface source near the origin. Figure C.2 also shows the plot of the scalar fluxes from

the TIEL benchmark.
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Glossary

error A defect due to an incomplete implementation of

the model and is not due to lack of knowledge., 61

explicit method A numerical method for solving differential equa-

tions where only current time step values are used

to compute extrapolated values, 14

fidelity The degree to which a model is an accurate repre-

sentation of physical process., 60

fully discretized A numerical method for solving partial differential

equations where all derivatives are represented with

finite differences, 14

implicit method A numerical method for solving differential equa-

tions where values from multiple time steps, in-

cluding extrapolated values, are used to compute

extrapolated values, 15

isotropic surface source A current source where the current along each or-

dinate is constant. See Lambertian source., 120

Lambertian source A current source which has uniform radiance per

steradian, 119

positive method A spatial quadrature that will unconditionally gen-

erate positive fluxes, 79
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semi-discretization A numerical method for solving partial differential

equations where only the spatial derivatives are rep-

resented with finite differences, 14

semi-implicit An implicit method that has been solved by lin-

earization, 16

stiff equation A differential equation that is numerically unstable

when the step size is not sufficiently small, 15

uncertainty A potential defect in the model due to insufficient

fidelity to the physical process., 61

validation A process for assessing the suitability of a model in

its intended application., 60

verification A process for assessing the conformance of a

model’s implementation., 60
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